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Abstract
When asked to move their unseen hand-to-visual targets, people exhibit idiosyncratic but reliable visuo-proprioceptive match-
ing errors. Unsurprisingly, vision and proprioception quickly align when these errors are made apparent by providing visual 
feedback of the position of the hand. However, retention of this learning is limited, such that the original matching errors 
soon reappear when visual feedback is removed. Several recent motor learning studies have shown that reward feedback 
can improve retention relative to error feedback. Here, using a visuo-proprioceptive position-matching task, we examined 
whether binary reward feedback can be effectively exploited to reduce matching errors and, if so, whether this learning leads 
to improved retention relative to learning based on error feedback. The results show that participants were able to adjust the 
visuo-proprioceptive mapping with reward feedback, but that the level of retention was similar to that observed when the 
adjustment was accomplished with error feedback. Therefore, similar to error feedback, reward feedback allows for temporary 
recalibration, but does not support long-lasting retention of this recalibration.
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Introduction

The ability to learn new motor skills and adapt movements 
to changes in the environment is essential to successful 
performance in daily tasks. Different types of information 
can drive motor learning. For example, when performing a 
simple action such as pressing a key on the keyboard, one 
can sense the movement outcome and compare this to the 
desired outcome, a process known as error-based learn-
ing. In situations that require a more complex sequence of 
actions to achieve the goal, or where the error is not easily 
evaluated, such as learning how to make a playground swing 
go higher, one has to learn based on success and failure. 
These reinforcement signals are inherently unsigned, and, 
therefore, do not give information about the required change 
in behavior to learn the task.

Error-based and reinforcement learning are thought to 
rely on different neural mechanisms. In error-based learning, 
adaptation of motor commands is driven by a discrepancy 
between observed and predicted sensory consequences, a 
mechanism that relies on the cerebellum (Weiner et al. 1983; 
e.g.; Martin et al. 1996; Tseng et al. 2007; Izawa et al. 2012; 
for a review see; Taylor and Ivry 2014). Reinforcement 
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learning has been thought to function independently of cer-
ebellar processes, instead relying on the basal ganglia (for 
a review, see Schultz 1998; Doya 2000), whereas ample 
behavioral studies have shown that motor learning can occur 
through sensory prediction errors, a few studies have investi-
gated motor learning through a reinforcement signal. These 
studies have shown that a reinforcement signal, provided in 
the form of points or a binary success/failure signal, is effec-
tive in adjusting the direction and/or curvature of a move-
ment (Izawa and Shadmehr 2011; Dam et al. 2013; Wu et al. 
2014; Nikooyan and Ahmed 2015; Therrien et al. 2016; but 
see; van der Kooij and Overvliet 2016; Chen et al. 2017).

Several studies have shown that it is possible to learn 
to compensate for visuo-motor rotations from reward feed-
back only (Izawa and Shadmehr 2011; Nikooyan and Ahmed 
2015), including simple binary feedback about movement 
success or failure (Izawa and Shadmehr 2011; Therrien et al. 
2016; van der Kooij and Smeets 2018). Moreover, greater 
retention has been found following learning through reward 
feedback compared to learning through error-based feedback 
(Shmuelof et al. 2012; Therrien et al. 2016).

Here, we investigated whether reward feedback can bring 
about lasting recalibration of vision and proprioception. To 
do this, we made use of the fact that the human visual and 
proprioceptive systems are not naturally aligned. When 
reaching with the unseen hand-to-visual targets, large idi-
osyncratic visuo-proprioceptive matching errors occur 
(Van Beers et al. 1996; Smeets et al. 2006; Rincon-Gon-
zalez et al. 2011; van der Kooij et al. 2013; Kuling et al. 
2016, 2017). These matching errors are typically several 
centimeters with a consistent magnitude and direction for 
different targets within the workspace (Kuling et al. 2013, 
2016) and are stable over time (Kuling et al. 2016). Unsur-
prisingly, when given continuous visual feedback about the 
hand position, people correctly align their hand position to 
visual target positions (Smeets et al. 2006). It has also been 
shown (Smeets et al. 2006) that after people have learned 
to correctly align their hand position to visual target posi-
tions, they drift back to their original visuo-proprioceptive 
matching error when visual feedback is removed. That is, 
the learned behavior is quickly forgotten.

The aim of the current study was to test whether reward 
feedback results in a better retention than the conventional 
online cursor feedback when correcting for natural visuo-
proprioceptive mismatches. Participants initially performed 
reaching movements to visual targets without visual feed-
back and subsequently could correct their natural visuo-
proprioceptive matching error through either online cursor 
feedback (error-based learning) or reward feedback (rein-
forcement learning). We developed a reinforcement-learning 
paradigm in which the target turned green when the unseen 
hand was at the target, allowing participants sufficient time 
to find the target location. In this paradigm, participants 

often had to search for the target during the early trials 
because of their matching error, but the feedback success-
fully drove corrections, eventually producing direct move-
ments to the target. We reduced target size in small steps 
to drive gradual adaptation to the veridical target position. 
We hypothesized that reward feedback would result in simi-
lar adaptation as online cursor feedback, and that reward 
feedback would result in higher retention than online cursor 
feedback in test blocks without visual feedback.

Methods

Participants

Thirteen people volunteered to take part in the experiment 
(11 men, 1 left-handed, aged 18–38). All participants had 
normal or corrected-to-normal vision. The data of 12 partici-
pants were analyzed, as one participant (male, right-handed) 
was excluded due to technical difficulties. The study was 
approved by the Queen’s University Research Ethics Board, 
and participants provided written informed consent before 
participating.

Experimental set‑up

Participants were seated in a chair and held the handle of a 
robotic manipulandum with their dominant hand (KINARM 
End-Point Robot, BKIN Technologies; Fig. 1). They per-
formed reaching movements to visual targets by moving the 
handle in the horizontal plane. Visual stimuli were presented 
on an overhead monitor and viewed via a mirror positioned 
horizontally between the monitor and the handle, such that 
the stimuli appeared in a horizontal plane at the level of 
the handle. The mirror prevented vision of the participants’ 
arms.

Stimuli and procedure

Visual targets were presented at six different targets posi-
tions on an elongated hexagon (Fig. 1). The experiment con-
sisted of five blocks: a baseline block, two learning blocks, 
and two test blocks. In the baseline and test blocks, visual 
targets were 2-cm-diameter white dots and we provided no 
feedback about the hand position. In the learning blocks 
with either error or reward feedback about the hand position, 
visual targets were 4-cm-diameter dots at the beginning of 
the block and the diameter gradually decreased in size with 
steps of 0.5 cm after every 18 trials (three repetitions of each 
target). As such, the diameter of the targets was 2 cm in the 
last 18 trials of the learning blocks, consistent with the target 
size in the baseline and test blocks.
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Since visuo-proprioceptive matching errors have shown 
to be idiosyncratic and constant for individuals over time 
(e.g., Kuling et al. 2016), adding those between-subjects 
differences into the design of the study would introduce 
a considerable amount of variability (a few centimeters). 
To increase the power of our study, we, therefore, chose a 
within-subject design. Such a design could introduce some 
variability due to a potential order-effect. However, this 
effect will be very small, as, for learning, a perturbation 
that resembles the natural visuo-haptic mismatch, van der 
Kooij et al. (2016) did not find differences in the amount of 
retention between subsequent repetitions of a learning block.

Each block started with a black screen with a text mes-
sage at the center of the screen indicating the upcoming 
block. The participants were asked to move their hand to 
the perceived center of the screen, and subsequently, the first 
visual target was presented. Participants were instructed to 
move their hand to the position of the visual target. The next 
target appeared after the program had detected movement 
offset (see below). Participants moved from one target to 
the next, so that the endpoint of one trial was the start point 
of the next trial.

All participants started with a baseline block in which 
they received no visual feedback while performing the 
matching task. In the second and fourth blocks (learning 
blocks), participants received either continuous error feed-
back or reward feedback when the target was reached, with 
the order counterbalanced across participants. In the error 
feedback block, a cursor (10-mm-diameter dot) was continu-
ously presented at the position of the hand. The matching 
task remained the same: directly move to the target. In the 
reward feedback block, the target turned green when the 
hand was in the target area. Participants had a maximum of 
10 s to move their hand to the target position and stop there. 

If the participant did not reach the stopping criterion within 
10 s, the trial was ended (time-out trial) and afterwards dis-
carded from further analyses.

In the test block with online cursor feedback, the offset 
was detected when the center of the cursor was in the visual 
target for a period of 1000 ms. In blocks without cursor 
feedback, movement offset was detected when the veloc-
ity of the hand was below 2 cm/s for 1000 ms, following a 
minimum velocity of 15 cm/s. A new target appeared after 
the detection of the movement offset with a delay of a few 
milliseconds.

To assess the retention of matching performance, each 
learning block was followed by a test block in which no feed-
back was provided (third and fifth blocks). In the baseline 
and test blocks, we presented ten sequences of all six targets 
in semi-random order (i.e., the last target of the sequence 
was never the same as the first target of the next sequence), 
resulting in 60 trials per block. The learning blocks con-
tained 15 sequences of all the six targets in semi-random 
order, resulting in 90 trials per block.

Data analysis

Data were analyzed offline using custom written software. 
For each trial, the reached endpoint was determined at the 
moment of movement offset as detected online (see proce-
dure). When very limited learning occurs, it is not useful to 
study retention. We, therefore, excluded the results of par-
ticipants that had a very large number of time-out trials in 
the reward block (> 25%). The data of one participant were 
excluded for this reason (23 time-out trials in the reward 
feedback block). The other participants only had a few time-
out trials (range 0–6; average 1.6).

Fig. 1   Set-up (left), target configuration (middle) and error definition 
(right). The targets were presented through a mirror set-up allowing 
the participant to move the dominant hand in the target plane without 
visual information of the hand. The six different target positions are 

presented in the center panel. The right panel illustrates an example 
of matching errors and the definition of error components. Note that 
the error components were defined for each target and each partici-
pant individually from the data in the baseline block
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We first determined the baseline visuo-proprioceptive 
matching errors for each participant and each target, using 
the data of the first block. For each trial, we calculated the 
vector between the endpoint of the reach and the center 
of the visual target. For each target, the matching error is 
represented by the mean of these vectors of all ten repeti-
tions. Next, we used the baseline matching errors to split 
the matching errors of the learning and test blocks into two 
components: primary and secondary errors (Smeets et al. 
2006). The primary error (signed) is the component of the 
error in the direction of the baseline visuo-proprioceptive 
matching error of that participant and target. The second-
ary (unsigned) error is the component of the error in the 
direction perpendicular to the direction of the primary error 
(Fig. 1c). Splitting the matching errors in these two compo-
nents allowed us to average over all participants and targets 
in a main error (primary) direction and a variable (second-
ary) direction. We also calculated the absolute error between 
the reach endpoint and the center of the target for each trial.

As the endpoints might drift towards stable performance 
in the baseline block, we used the performance in the last 
six trials of this block as our measure for baseline perfor-
mance. To test whether the reward feedback results in a simi-
lar amount of adaptation as error feedback, we compared the 
adaptation (errors in the first six trials of the test blocks) for 
both types of feedback with each other and with the errors 
in the baseline with a one-way ANOVA (baseline, test error, 

and test reward). To test our hypothesis that reward feedback 
results in a better retention of veridical visuo-propriocep-
tive alignment than error-based feedback, we compared the 
retention (errors in the last six trials of the test blocks) for 
both types of feedback with each other and with the errors 
in the baseline with a one-way ANOVA (baseline, test error, 
and test reward). Both analyses were done for the primary 
errors and secondary errors.

Results

Participants performed a 2D spatial matching task in which 
they learned to correct for their natural visuo-proprioceptive 
matching errors. We compared the retention of veridical 
visuo-proprioceptive alignment learned through error feed-
back and binary reward feedback. The experiment started 
with a baseline block (green data points in Fig. 2), in which 
the primary and absolute matching errors increased in the 
first few trials, and stabilized at an average magnitude of 
about 4 cm. The primary and secondary components of the 
errors relate to the consistency over the error direction and 
the variability in the perpendicular direction, respectively.

With both types of feedback, the errors were immediately 
reduced to a value close to zero (black data points in Fig. 2). 
The absolute error slightly decreased during the learning 
blocks as a result of the gradually decreasing target size. 

Fig. 2   Results.  Left: errors averaged across all participants (n = 12). 
The data are organized, such that the first learning block represents 
the error feedback block and the second learning block represents the 
reward feedback block, but the actual order of the two learning blocks 

was counterbalanced across participants. Right: baseline and the 
mean errors of the first (lighter colors, adaptation) and last six (darker 
colors, retention) trials of the test blocks. Error bars show SEM
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This is especially clear in the reward feedback block (second 
leaning block), as the participants typically stopped moving 
their hand as soon as they reached the border of the target 
and obtained the reward. The secondary error was slightly 
greater in the test blocks compared to baseline.

In the test block following the error feedback block (blue 
data points), the primary errors in the first few trials were 
quite small (good adaptation), after which the errors drifted 
back to the level of the baseline visuo-proprioceptive match-
ing error (poor retention). A similar drift can be seen in the 
absolute errors. For both measures, the initial level of the 
errors was not completely at zero, suggesting that adapta-
tion was not complete, even though participants were able 
to reach the targets with either form of feedback. In the test 
block after the reward feedback block (red data points), both 
the primary and the absolute errors showed a gradual drift 
similar to the errors following the error feedback block.

To test whether feedback type influenced the level of 
adaptation and retention in the test blocks, we performed two 
one-way ANOVAs (right panel in Fig. 2). For the primary 
errors, a main effect on adaptation was found (F2,20 = 23.10, 
p < .001). Post hoc comparisons with Bonferroni corrections 
showed significant differences between both test blocks and 
baseline (both p’s =  .001), but no differences between the 
two test blocks (p = .185). For the retention, there was no 
main effect (F2,20 = 1.38, p = .274). The secondary errors 
did not differ from baseline for both adaptation (F2,20 = 0.38, 
p = .692) and retention (F2,20 = 1.21, p = .319).

Briefly, we found that both error and reward feedback 
resulted in similar levels of adaptation of the learned behav-
ior immediately after visual feedback was removed. Further-
more, the errors increased during the test block in a similar 
way for both types of feedback. The lack of significant dif-
ferences between retention and baseline indicates that the 
matching errors had fully drifted back to the initial natural 
visuo-proprioceptive matching errors during de-adaptation, 
independent of whether learning was achieved through error 
or reward feedback.

Discussion

In this study, we showed that (1) binary reward feedback 
is effective in reducing biases in a position-matching task, 
but (2) this reinforcement learning does not result in greater 
retention than error-based learning. Through online cursor 
feedback or binary reward feedback, participants correctly 
aligned their hand position to visual targets, thus overcoming 
natural visuo-proprioceptive matching errors. Upon removal 
of visual feedback, the initial errors showed partial retention 
of adaptation, but the errors gradually drifted back to the 
level of the baseline visuo-proprioceptive matching errors. 
Importantly, the early and late error levels were similar for 

both feedback types; that is, we did not find benefits for 
reinforcement learning over error-based learning in terms 
of adaptation or retention.

Reinforcement learning has been shown to be effective 
in adaptation of the direction of a movement to an unseen 
visuo-motor rotation in 2D (Izawa and Shadmehr 2011; 
Nikooyan and Ahmed 2015; Therrien et al. 2016), but not in 
a 3D visuo-motor rotation task (van der Kooij and Overvliet 
2016). It is hypothesized that optimal reinforcement learning 
requires a balance between exploration variability and motor 
noise (Therrien et al. 2016). Therefore, the complexity of the 
task and the nature of the movement changes required to be 
successful are important factors to learn successfully from 
reinforcement. van der Kooij and Smeets (2018) have shown 
that reinforcement adaptation is reduced with increasing spa-
tial complexity, such as increasing the number of target posi-
tions or the number of dimensions that the feedback is based 
on. This suggest that a 2D visuo-motor rotation is relatively 
easy to adapt, because there is only one degree of freedom 
for direction and people naturally vary movement direction, 
while a spatial perturbation with multiple degrees of free-
dom is much harder to adapt to from reinforcement only.

Here, we showed that a binary reward signal is effective in 
adapting reach endpoint positions of movements to multiple 
targets in 2D. Specifically, participants learned to correctly 
match the unseen position of the hand with a visual target. 
Only one of the participants had difficulty in finding the cor-
rect positions within the provided amount of time per trial 
through only a binary feedback signal, and was, therefore, 
excluded. The other participants showed considerable indi-
vidual differences in successfully using the reward feedback 
in the first few trials. The participants who were assigned to 
the group that received reward feedback in the first learning 
block seemed to have more difficulties in the first few trials 
than the participants who received reward feedback in the 
third block, resulting in more exploratory movements in the 
first few trials. In our paradigm, we decreased the size of 
the targets in small steps, so that participants were gradually 
guided towards the veridical target positions. Since matching 
errors are idiosyncratic, our paradigm might have been more 
effective if we would have scaled the size of the targets to the 
size of the matching errors. This could potentially improve 
the learning process by making the initial mismatch with the 
rewarded area smaller, but it remains to be seen whether this 
would increase the level of retention.

In our data, the level of retention was similar for both 
feedback types. Several studies have shown higher reten-
tion levels for reinforcement learning than for error-based 
learning (Shmuelof et al. 2012; Hasson et al. 2015; Ther-
rien et al. 2016) or with reward feedback in addition to error 
feedback (Galea et al. 2015). However, other studies did not 
find benefits of adding reward feedback to error feedback 
on retention (Steel et al. 2016; van der Kooij and Overvliet 
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2016). Izawa and Shadmehr (2011) hypothesized that learn-
ing from sensory prediction error alters the predicted sen-
sory consequences of motor commands, while learning from 
reward prediction error updates action selection to maximize 
reward but does not accompany a sensory remapping. They 
found that learning from sensory prediction errors general-
ized broadly to neighboring target locations, whereas learn-
ing from reward prediction error generalized only locally, 
suggesting that the neural basis of learning from sensory 
and reward prediction errors is distinct. Consistent with this 
idea, Therrien et al. (2016) showed that patients with cer-
ebellar degeneration showed no retention following error-
based learning, but showed full retention following rein-
forcement learning. Furthermore, Criscimagna-Hemminger 
et al. (2010) found that patients with cerebellar ataxia were 
impaired in adapting their reaching movements to large, 
sudden perturbations, but showed marked improvements 
when the perturbation was introduced sufficiently gradually 
(resulting in more successful movements), with persistent 
aftereffects when the perturbation was removed. Based on 
these results and the finding that healthy participants show 
persistence of the adapted behavior when they are exposed 
to binary reward feedback following adaptation, Shmuelof 
et al. (2012) suggested that learning driven by reinforcement 
of successful actions is responsible for longer term retention. 
To date, the exact conditions that allow for such persistent 
changes in motor behavior remain unclear.

To conclude, we presented a paradigm for reinforcement 
learning in a 2D spatial task and showed that most partici-
pants (11 out of 12) could intuitively use the reward feedback 
and learned to overcome their natural visuo-proprioceptive 
matching errors. Removing the feedback led to similar levels 
of retention for reinforcement and error-based learning.
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