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Recently it has been shown that rewarded variability can be used to adapt visuomotor behavior. However,
its relevance seems limited because adaptation to binary rewards has been demonstrated only when the
same movement is repeated throughout the experiment. We therefore investigated whether the adaptation
is action-specific and whether the amount of exploration depends on spatial complexity. Participants
pointed to 3�D visual targets without seeing their hand and could use only binary reward feedback to
adapt their movements. We varied the number of target positions and the number of dimensions the
feedback was based on. Because the feedback was based on a 5-cm rightward shifted hand position,
adaptation was needed for good performance. The participants started naïve to the perturbation. If actions
were made toward a single target position and the feedback was based on the lateral component of their
response only, participants adapted completely within 200 trials. Having more than 1 target position or
more than 1 dimension of performance resulted in considerably less adaptation but did not affect the
exploration. Thus, reward-based adaptation can generalize across actions but is reduced by spatial
complexity, whereas exploration is not affected by spatial complexity.
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When one performs a goal-directed movement toward a visual
target, the brain needs to transform the target position into a motor
command. This visuomotor transformation cannot be fixed, be-
cause the body, the environment, and the tools one uses change.
For this, one can rely on visuomotor adaptation: updating the
transformation based on feedback about the movement (see Bas-
tian, 2008; Huberdeau, Krakauer, & Haith, 2015; Krakauer &
Mazzoni, 2011; Lackner & DiZio, 2005, for reviews). It has long
been known that visuomotor adaptation relies on learning from
feedback about error: differences between the movement outcome
and the predicted (or intended) outcome (Baddeley, Ingram, &
Miall, 2003; Benson, Anguera, & Seidler, 2011; Burge, Ernst, &
Banks, 2008; Hinder, Riek, Tresilian, de Rugy, & Carson, 2010;
Krakauer, 2009; van Beers, 2009). More recently, it has been
shown that feedback about success (reward) may be sufficient to
adapt the movement plans (Cashaback, McGregor, Mohatarem, &
Gribble, 2017; Izawa & Shadmehr, 2011; Therrien, Wolpert, &
Bastian, 2016). The scope of the contribution of reward-based
processes to visuomotor adaptation is unclear, however, because it
has primarily been demonstrated in a very specific paradigm.

How the brain processes feedback (reward and error) in visuo-
motor adaptation is generally studied in a center�out reaching
paradigm in which participants make planar reaching movements,
while performance feedback is based on a hand position that is
rotated around the center (e.g., Cohen, 1967; Fernández-Ruiz,
Díaz, Aguilar, & Hall-Haro, 2004; Mazzoni & Krakauer, 2006;
Redding & Wallace, 1988). Experiments using this paradigm have
shown that error-based and reward-based motor adaptation have
complementary qualities (Huberdeau et al., 2015; Krakauer &
Mazzoni, 2011; Manley, Dayan, & Diedrichsen, 2014; Wolpert,
Diedrichsen, & Flanagan, 2011). Adaptation to errors is fast,
smooth, and transient (Burge et al., 2008; Hinder et al., 2010;
Smith, Ghazizadeh, & Shadmehr, 2006; van der Kooij, Overvliet,
& Smeets, 2016), although explicit adaptation is more variable
than is implicit adaptation (Benson et al., 2011; Mazzoni &
Krakauer, 2006; Taylor, Krakauer, & Ivry, 2014). Reward-based
adaptation is slow, erratic, and persistent (Hasson, Manczurowsky,
& Yen, 2015; Izawa & Shadmehr, 2011; Nikooyan & Ahmed,
2015; Therrien et al., 2016). The scope of the reward-based adap-
tation is unclear because it has mainly been demonstrated in
single-target tasks and because the exploratory variability it de-
pends on hasn’t been studied thoroughly in the context of visuo-
motor adaptation.

The scope of reward-based adaptation may be more limited than
that of error-based adaptation because it requires many repetitions
of the same movement plan, whereas error-based adaptation does
not. In other words, reward-based adaptation may be action-
specific, whereas error-based adaptation may be action-
independent. Error-based adaptation is qualitatively quite similar
when moving to a single target position (Izawa & Shadmehr,
2011), to eight target positions (Hinder et al., 2010), or to a
different target position on each trial (van der Kooij, Brenner, van
Beers, Schot, & Smeets, 2013). Binary reward feedback, in con-
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trast, does not lead to adaptation when participants move to a
different target position on each trial (van der Kooij & Overvliet,
2016). Also, the generalization of adaptation depends on the type
of feedback. Error-based adaptation has been found to generalize
to untrained target positions (Izawa & Shadmehr, 2011), to the
opposite limb (Choe & Welch, 1974; Taub & Goldberg, 1973;
Taylor, Wojaczynski, & Ivry, 2011), and even from walking to
pointing (Morton & Bastian, 2004). Adaptation to binary reward,
on the other hand, has been found to transfer poorly to untrained
target positions (Izawa & Shadmehr, 2011). However, adaptation
to a more informative reward (one that depends on the size of the
error) has been found to generalize to nearby target positions
(Nikooyan & Ahmed, 2015). More evidence that reward-based
adaptation is action-specific is provided by an elegant study by
Huang, Haith, Mazzoni, and Krakauer (2011). They investigated
the hypothesis that faster readaptation to the same perturbation
(savings) is due to reward-based adaptation. They showed that
savings depended on the repetition of target position in a hand-
centered coordinate frame, which suggested that the adaptation
that produced savings was tied to the trained movement plan. To
assess the extent to which error-based and reward-based adaptation
are action-specific or action-independent, Izawa and Shadmehr
(2011) tested whether the adaptation affects proprioceptive esti-
mates of hand position. They found that error-based adaptation
affects proprioceptive estimates of hand position, whereas reward-
based adaptation does not, again suggesting that the reward-based
adaptation is action-specific.

Although it is tempting to interpret reward-based adaptation as
inherently action-specific, it is not by definition the case. One can
regard reward-based adaptation as a combination of exploration
and learning from rewarded exploration (Therrien et al., 2016).
This description in principle allows for learning general properties
of an environment, as long as these general properties are ex-
plored. In this view, the different levels of adaptation that have
been reported for single-target position paradigms (Izawa & Shad-
mehr, 2011; Therrien et al., 2016) and a multitarget position
paradigm (van der Kooij & Overvliet, 2016) may have been caused
by participants’ exploring less efficiently in the multitarget case.
The amount and direction of exploration has, for instance, been
found to depend on the task (Wu, Miyamoto, Gonzalez Castro,
Ölveczky, & Smith, 2014) and on the statistical properties of the
feedback (Pekny, Izawa, & Shadmehr, 2015; Sidarta, Vahdat,
Bernardi, & Ostry, 2016; Vaswani et al., 2015). In experiments
that employ more than one target position, exploration may be less
efficient than in single-target experiments because the search prob-
lem becomes more complex with additional target positions. There
may be a position-specific cause for the reward, a general cause, or
a combination of the two. It has, for instance, been found that
awareness of the presence of a perturbation is associated with
greater exploration along the task-relevant dimension (Manley et
al., 2014), suggesting that participants explore more efficiently
when they know where to search. If exploration is less efficient
due to the complexity of moving to multiple targets, other forms of
complexity should also hamper exploration and thereby reward-
based adaptation. For instance, performing a 3�D task rather than
a 1�D single-target position (1�D1) task may reduce reward-
based adaptation.

In this study, we used a 3�D visuomotor adaptation paradigm
to assess how reward-based adaptation and exploration depend on

two forms of spatial complexity: moving to more than one target
position and performing a one-dimensional or three-dimensional
task. To test whether suggesting an overall property to explore
enhances exploration and adaptation, we first assessed adaptation
to feedback based on a perturbed hand position in a naïve phase in
which participants were not informed about the presence of a
perturbation, and subsequently participants were informed that
there was a perturbation and repeated the adaptation.

Method

Participants

In total, 65 participants who declared to be healthy (32 female,
59 right-handed, ages 24.5 years � 6.1) took part in the study.
They were randomly assigned to one of four groups in which we
tested the influences of the number of target positions and the
number of dimensions the feedback was based on: a three-
dimensional distance in space or a one-dimensional lateral dis-
tance. We call this number the “task dimensionality.” There were
three one-dimensional groups that pointed to one, three, or six
target positions (1�D1: eight male, eight female, mean age �
24.1; 1�D3: 10 male, six female, mean age � 24.8; and 1�D6: 10
male, six female, mean age � 25.6). In addition, there was a
three-dimensional group that pointed to a single-target position
(3�D1: five male, 12 female, mean age � 23.6). Stereovision was
assessed with the Stereo Fly Test (Western Ophthalmics, Lyn-
wood, WA). Based on this test, three participants (one in the 3�D1

group and two in the 1�D6 group) with a stereo acuity �100�
were excluded from participation. The methods were approved by
the local ethical committee and adhered to the Declaration of
Helsinki (World Medical Association, 2013). Participants pro-
vided written informed consent before participating.

Materials

We used an HTC Vive for visual display (resolution 2160 �
1200 for each eye; frame rate 90 Hz) and motion tracking
(90 Hz, �1-mm precision), and the experiment was pro-
grammed using the Unity 3�D game engine. Participants held
the Vive controller (a handle and a ring with markers that
allowed tracking their movements; see Figure 1C). When re-
ferring to the position of the controller, we generally refer to the
point where the ring touched the handle.

Procedure

When participants entered the room, they could view a score-
board displaying the scores of other participants. The scoreboard
was used to motivate participants to pay attention to the reward
score that would be provided later in the game. Participants first
performed the Stereo Fly Test, with which stereovision was as-
sessed. After that, eye distance was measured with a ruler, and the
distance between the lenses of the head mounted display (HMD)
was adjusted accordingly. Participants were instructed to place the
thumb of their dominant hand on an inactive button on the con-
troller that served as a reference. They were told that a target fly
(5 � 2 � 5 cm, including the wings) would appear in front of them
and that their task was to “catch” the fly by touching it with their
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Figure 1. Methods used in the study. Panel A: Experimental set-up with HTC Vive, virtual starting position and targets.
Panel B: Target positions that were used in the different groups. Panel C: Handheld controller with the registered position
indicated. Panel D: Time course of the four experimental phases (baseline, naïve adaptation, retention, informed adaptation)
and questionnaires (data shown the Supplementary material; Figure S1 and Figure S2). Panel E: Feedback types used in the
phases without feedback (‘no feedback’) and in the phases with feedback (‘reward’, ‘no reward’). See the online article for
the color version of this figure.
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thumb and holding their hand still for a moment before returning
the controller to the start position. Participants were informed that
they would perform about 200 trials, starting with a baseline phase
in which they received no performance feedback, and that after
that they would be able to score points and would finish with
another phase without performance feedback. Participants in the
3�D1 group were told that they would score points based on the
3�D distance between the thumb and fly, whereas participants in
the other three groups were told that they could focus on the lateral
dimension because scores were exclusively based on the lateral
component of their end points. This provided information about
the dimension to explore but left the participant naïve with respect
to the presence of a perturbation. To introduce a constant bias that
participants could adapt to, we based feedback on a 5-cm
rightward-shifted center of the controller’s ring (comparable to a
5° azimuth rotation around the cyclopean eye).

Once the participants had put on the HMD, they were asked to
position themselves behind a virtual pole (height � 1.5 m) with a
red knob, which was the starting position for their pointing move-
ments (see Figure 1A). They were asked to look straight ahead,
and after the experimenter pressed a button, the HMD’s vertical
position relative to the ground was recorded as the participants’
height. The starting position was at 75% of the participants’ height,
and a prism-shaped volume (14-cm equilateral triangle as the base
and 14 cm high) in which targets could appear was centered 40 cm
straight in front of the starting position (see Figure 1B). The six
corners of this volume could serve as target positions.

In the 3�D1 and 1�D1 groups, the target was always presented
at the far highest point of the prism. In the 1�D3 group, two
additional targets were presented: one at the near-left corner and
one at the near-right corner. In the 1�D6 group, all six corners of
the prism were used. The targets were presented in blocks of six
trials. For the 1�D3 and 1�D1 groups, the target position was
always the same, whereas for the 1�D3 and 1�D6 groups, there
were no immediate repetitions of target position. For the 1�D3

group, the set of three target positions was used twice in a pseu-
dorandom order, and for the 1�D6 group, the six target positions
were used once in a pseudorandom order.

To start the first trial, participants were instructed to touch the
starting position with the controller. Then the first target fly
appeared with the trial number (cumulative across phases) indi-
cated above it. At this moment, participants could initiate a move-
ment with the controller toward the fly. An end point was regis-
tered when the velocity of the controller dropped below 3 cm/s.
The detection of an end point was signaled to participants with the
trial number’s changing color, and depending on the phase (de-
scribed in the next paragraph), feedback was provided. After that,
participants returned the controller behind the starting position.
Once the controller was behind the starting position, a new target
appeared. An average trial took about 280 ms.

After a practice block of six target presentations in which
veridical visual feedback of the controller was shown continuously
to let participants get acquainted with the task, there were four
phases without direct vision of the controller (see Figure 1D): a
baseline phase (seven blocks), a naïve adaptation phase (16
blocks), a retention phase (eight blocks), and an informed adap-
tation phase (eight blocks). During the baseline phase, no perfor-
mance feedback was provided. After the baseline phase, a text was
displayed encouraging the participant to start scoring points and a

cumulative score initiated at zero was displayed next to the trial
number. With this, the naïve adaptation phase started.

In the naïve adaptation phase, binary performance feedback was
provided based on the end-point error. For participants in the
3�D1 group, the end-point error was the distance between the end
point of the controller and the center of the target fly, whereas for
the other groups, the end-point error was the lateral distance
between the end point of the controller and the center of the target
fly. We used a shaping paradigm (Skinner, 1938) to ensure that
participants with different levels of performance would receive a
similar amount of reward. Trials were rewarded when the end-
point error was smaller than a moving average of the previous five
trials or smaller than 30% of the median error in the baseline
phase. The score was calculated in the adaptation phases exclu-
sively. In the multiple-target groups, we used a single running
average for all target positions. The reward consisted of an ani-
mation of the fly dying, five scored points, the trial number
coloring green, and a rewarding sound. When a trial was not
rewarded, the fly disappeared without any sound and the trial
number turned red.

The end of the naïve adaptation phase was indicated with a text
that announced that the retention phase started, and the cumulative
score was removed from the scene. In the retention phase, again no
performance feedback was provided. After that, participants
viewed their score and took off the headset to complete a short
questionnaire, which we administered to get an idea of the explo-
ration strategies employed by participants.

After the questionnaire was completed, we informed partici-
pants that the feedback had been based on a horizontally shifted
hand position and that they could use this information to improve
their score. After that, they put on the HMD again, and the
informed adaptation phase started. This phase was identical to the
naïve adaptation phase. When they had finished, the experimenter
wrote their score on a sticky note and added it to the scoreboard.
The experiment finished with another administration of the short
exploration questionnaire.

Data Analysis

All data (including statistics) were processed and analyzed using
custom-written MatLab R2017a software (MatLab, 2017). The
basis of all analyses was the end-point error: the difference vector
between the end point of the controller and the position of the
target. Based on the end-point error, we calculated two parameters:
the adaptation index and the exploration factor, as explained next.

To calculate the adaptation index, we first subtracted the bias at
target position t in the baseline phase (the mean end-point error in
the baseline phase for that target position) to remove natural biases
(van der Kooij et al., 2013). The lateral component of the resulting
value (ex) was normalized by the lateral difference between the
position-specific baseline bias at target position t and the 5-cm
lateral perturbation:

adaptation index �
ex

t

perturbation � biasx
t .

This way, an adaptation index of zero would indicate no adaptation
and an adaptation index of one would indicate complete adapta-
tion.
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We defined the asymptotic adaptation as the mean adaptation
index in the last block of a phase. For the 3�D1 group, we also
analyzed the 3�D asymptotic adaptation, which was based on the
3�D adaptation index. The 3�D adaptation index was calculated
using the same procedure as for the adaptation index. However, the
3�D adaptation index was based on the amplitude of the 3�D
end-point error. The 3�D asymptotic adaptation was the mean
3�D adaptation index in the last block of a phase.

To separate exploration from other sources of variability in the
data, we reasoned that in the baseline phase, participants had no
reason to explore. Therefore, the variability in this phase would be
a result of planning noise, execution noise, and sensory noise, not
active exploration (which we refer to as “noise”). We therefore
used the variability in this phase as an estimate of noise. Explo-
ration in search of reward during the adaptation phases adds
variability, so we used the increase in variability in the adaptation
phases as a proxy for exploration. We could not use the standard
deviation as a measure of variability because the expected adap-
tation to the perturbed feedback would contribute to this measure.
We therefore used the amplitude of the change in the 3�D end-
point error between two subsequent trials (	) as our measure of
variability. For uniformly and normally distributed errors, 	 is
about 2.2 times the standard deviation in one dimension. The
contribution of exploration to the variability was calculated in two
steps. We first subtracted the contribution of noise (the median 	
in the baseline phase). Second, we divided the resulting value by
the noise and obtained the exploration factor. 	
 was the mean
exploration factor in an adaptation phase. 	
x was the lateral
component of the exploration factor, 	
y the vertical component,
and 	
z the depth component. We expressed the exploration as a
fraction of the noise because reward-based adaptation depends on
a balance between noise and exploration rather than on the explo-
ration per se (Therrien et al., 2016). A difference with the Therrien
et al. (2016) approach is that we determined the amount of active
exploration aimed at obtaining reward, whereas Therrien et al.
defined exploration as all motor variability that the system has
access to which may or may not contain additional components.

Because outliers are difficult to distinguish from exploration, no
outliers were removed; all data were analyzed nonparametrically such
that the analyses were robust for outliers. We used Wilcoxon’s rank
sum tests for between-groups comparisons and Wilcoxon’s sign rank
tests for within-group comparisons. Statistical tests were aimed at
testing predictions concerning the action-specificity of adaptation and
exploration. We tested three predictions that assessed how adaptation
depends on the number of target positions and the spatial complexity.

Adaptation and spatial complexity.
Number of target positions. First, based on the idea that

reward-based adaptation is action-specific, we predicted that the as-
ymptotic adaptation depends negatively on the number of target
positions (invoking actions in different directions). The influence of
the number of target positions on the asymptotic adaptation was tested
by entering the asymptotic adaptation in the naïve adaptation phase of
the 1�D1, 1�D3, and 1�D6 groups in a Kruskal�Wallis test. Post
hoc comparisons compared the asymptotic adaptation between the
individual groups using Wilcoxon’s rank sum tests that tested whether
the asymptotic adaptation was always greater in the group that pointed
to fewer target positions (1�D1 � 1�D3; 1�D1 � 1�D6; 1�D3 �
1�D6).

Dimensionality. Second, if spatial complexity, rather than the
number of target positions per se, affects adaptation, one would expect
the adaptation to also be reduced by another form of complexity. We
therefore predicted that the asymptotic adaptation depends negatively
on the task dimensionality. This prediction was tested by examining
whether the asymptotic adaptation in the naïve adaptation phase was
greater in the 1�D1 group compared to the 3�D1 group using a
Wilcoxon’s rank sum test. Because the reward criterion in the 3�D1

group was based on the 3�D error, which was generally higher than
the lateral error, we additionally tested whether the adaptation asymp-
tote in the naïve adaptation phase of the 1�D1 group was higher than
the 3�D adaptation asymptote in the naïve adaptation phase of the
3�D1 group using a Wilcoxon’s rank sum test.

Adaptation and information. Third, based on the idea that
informing participants about the presence of a perturbation in-
creases the efficiency of exploration, we predicted that the asymp-
totic adaptation increases in the informed adaptation phase. This
prediction was tested by comparing the asymptotic adaptation in
the naïve and informed phase using a Wilcoxon signed-ranks test.
We also tested, in addition to these predictions, whether the
asymptotic adaptation decreased in the retention phase using a
Wilcoxon signed-ranks test.

The analyses of exploration first tested whether there was a
significant exploration factor (	
x � 0) using a Wilcoxon signed-
ranks test. After that, we tested how the exploration factor depends
on three factors: spatial complexity, information about the pres-
ence of a perturbation, and the reward history (Pekny et al., 2015;
Sidarta et al., 2016).

Exploration and spatial complexity.
Number of target positions. To assess whether the exploration

factor depended on the spatial complexity, we first tested whether
it depended on the number of target positions, by performing a
Kruskal�Wallis test on the 	
x in the naïve adaptation phase of
the participants in the 1�D1, 1�D3, and 1�D6 groups.

Dimensionality. Whether task dimensionality affects the lat-
eral component of the exploration factor was assessed by compar-
ing the mean 	
x in the naïve adaptation phase of the 1�D1 and
1�D3 groups using a Wilcoxon’s rank sum test. To examine
whether the exploration factor is larger when a dimension is
task-relevant, we used the fact that the vertical and depth dimen-
sions were task-relevant for the 3�D1 group but not for the 1�D1

group. Using Wilcoxon’s rank sum tests on 	
y and 	
z, we
tested whether the mean vertical and depth components of the
exploration factor in the naïve adaptation phase were larger for the
participants in the 3�D1 group than for the participants in the
1�D1 group.

Exploration and information. To test how information about
the presence of a perturbation affects the exploration factor, we
compared the exploration factor for the naïve adaptation phase
with that for the informed adaptation phase. Whether the lateral
exploration increased in the informed adaptation phase was tested
by comparing the participant’s mean 	
x in the naïve adaptation
phase to the mean lateral factor 	
x in the informed adaptation
phase using a Wilcoxon signed-ranks test. In addition, we tested
whether the mean vertical and depth exploration factors (	
y and
	
z, respectively) differed between the naïve and informed adap-
tation phases using a Wilcoxon signed-ranks test.

Exploration and reward. To test whether lateral exploration
increases after a nonrewarded trial (Pekny et al., 2015; Sidarta et
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al., 2016), we compared the participants’ mean lateral exploration
factor following nonrewarded trials with the mean lateral explo-
ration factor following rewarded trials in the naïve adaptation
phase and in the informed adaptation phase using Wilcoxon
signed-ranks test.

Results

Adaptation Decreases With Spatial Complexity and
Increases With Information

As expected, the adaptation index increased with block number
(see Figure 2A). The increase depended on the experimental
group: The most adaptation occurred for the 1�D1 group. We
planned three statistical analyses to compare the amount of adap-
tation. Our first planned statistical analysis (comparing the three
one-dimensional groups) confirmed the prediction that the adap-
tation asymptote depended on the number of target positions,
�2(45, N � 46) � 9.9, p � .007, 
2 � .22 (see Figure 2B). Post
hoc comparisons showed that the adaptation asymptote was higher
in the 1�D1 group compared to the adaptation asymptote in the
1�D3 group (Mdns � .95 and .31, respectively; z � 2.97, p �
.003, r � .52). The adaptation asymptote in the 1�D3 group
(Mdn �.34) did not significantly differ from the adaptation as-
ymptote in the 1�D6 group (z � �1.16, p � .25, r � .20) and also
did not differ from the adaptation asymptote in the 1�D6 group
(z � 1.51, p � .13, r � .27).

Our second planned statistical analysis (concerning the depen-
dency on task dimensionality) confirmed the second prediction,
that the asymptotic adaptation would be higher in the 1�D1 group
compared to the 3�D1 group (Mdns � .95 and .07, respectively;
z � 3.15, p � .001, r � .55). The adaptation asymptote in the
1�D1 group was also higher than the 3�D adaptation asymptote
in the 3�D1 group (Mdns � .95 and .19, respectively; z � 4.13,
p � .001, r � .72), indicating that less adaptation in the 3�D1

group was not due to testing the lateral adaptation, whereas the
reward criterion was based on a 3�D distance. Thus, the adapta-
tion depended negatively on the number of target positions and on
the task dimensionality.

Our third planned statistical analysis (comparing the informed
and retention phases with the naïve adaptation phase) showed that
the asymptotic adaptation did not decrease from the naïve adap-
tation phase to the retention phase (Mdns � .44 and .28, respec-
tively; z � �.24, p � .81, r � .02) and increased from the naïve
adaptation phase to the informed adaptation phase (Mdns � .44
and .89, respectively; z � 2.09, p � .036, r � .18; see Figure 2B).
In other words, the retention was good (in line with the reported
persistence of reward-based adaptation), and the information about
the perturbation improved adaptation, in line with our prediction.
Moreover, in the informed adaptation phase, the adaptation did not
depend on the number of target positions, �2(45, N � 46) � .72,
p � .69, 
2 � .02, or the dimensionality (z � �1.02, p � .30, r �
.17).

We additionally checked whether participants in the one-
dimensional groups with more than one target did not simplify
their task by responding to the lateral position of the targets only.
For the 1�D3 and 1�D6 groups, we correlated the controllers’ end
points and target positions in the naïve adaptation phase. We found

that the end points and target positions in both the 1�D3 and
1�D6 target groups were significantly correlated in all dimensions
(p � .01). For the 1�D3 target group, the Pearson’s R for the
correlation between the end points and targets were .83, .98, and
.28 for the lateral, vertical, and depth components, respectively.
For the 1�D6 target group, these values were .83, .96, and .41,

Figure 2. Adaptation. Overview of the median adaptation with interquar-
tile range. Panel A: Adaptation index as a function of block number for the
four different one- and three-dimensional groups—3�D1 (one target po-
sition), 1�D1 (one target position), 1�D3 (three target positions), and
1�D6 (six target positions)—in the different phases (BL � baseline; NA �
naïve adaptation; reaction time [RT] � retention; IA � informed adapta-
tion). Shaded areas indicate the interquartile range, light-gray vertical
sections indicate episodes without feedback. Dashed lines indicate the level
at which adaptation would be complete whereas solid lines indicate the
level at which there would be no adaptation. Panel B: Asymptotic adap-
tation in the different phases. Comparisons that we tested statistically are
indicated with a horizontal bar. Error bars indicate the interquartile range,
the vertical shaded area indicates an episode without performance feed-
back. � p � .05. �� p � .01. See the online article for the color version of
this figure.
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respectively. This shows that participants followed the target po-
sitions in all dimensions.

Exploration Does Not Depend on Spatial Complexity

We found that in the naïve adaptation phase, there was clear
exploration (z � 6.6, p � .001, r � .83). We planned three
comparisons on the exploration concerning spatial complexity,
information about the presence of a perturbation, and the reward
history.

Although Figure 3A suggests that the exploration is larger in the
1�D3 group compared to the other groups, this apparent effect of
the number of target positions on the lateral exploration factor 	
x

in the naïve adaptation phase was not significant, �2(45, N �
46) � 4.19, p � .12, 
2 � .09. The lateral exploration factor in the
naïve adaptation phase also did not differ between the 3�D1 and
1�D1 groups (z � .09 p � .93, r � .02), which indicated that the
exploration factor did not depend on task dimensionality. Whether
exploration is larger when a dimension is task-relevant was as-
sessed by comparing the vertical exploration factor 	
y and depth
exploration factor 	
z for the 3�D1 group, for whom these
dimensions were task-relevant, with the 1�D1 group, for whom
these dimensions were task-irrelevant (see Figure 3A, right sec-
tion). It is interesting that neither the vertical exploration factor nor
the depth exploration factor was greater in the 3�D1 group com-
pared to the 1�D1 group (z � .95, p � .34, r � .17, and
z � �0.31, p � .76, r � .05, respectively). Moreover, the explo-
ration factor was very similar for the task-relevant and task-
irrelevant directions.

Exploration Increases With Information and
Reward Absence

Information about the presence of lateral perturbation influ-
enced the exploration factor (see Figure 3B). The perturbation-
relevant lateral exploration factor significantly increased (z �
2.26, p � .009, r � .23; see Figure 3B, left section), whereas the
exploration factor for the perturbation irrelevant dimensions de-
creased (	
y: z � �4.45, p � .001; 	
z: z � �3.59, p � .001, r �
.32; see Figure 3B, right section).

The history of reward also influenced the exploration (see
Figure 3C, left section). In the naïve adaptation phase, the lateral
exploration factor following nonrewarded trials was larger than
that following rewarded trials (z � 4.39, p � .001, r � .39). This
finding was replicated in the informed adaptation phase (z � 4.74,
p � .001, r � .42; see Figure 3C, right section).

Discussion

The aim of this study was to test how reward-based adaptation
and exploration are affected by two forms of spatial complexity:
the number of target positions and the task dimensionality (the
number of dimensions that the feedback was based on). In addi-
tion, we tested how information about the presence of a perturba-
tion influences reward-based adaptation.

Adaptation Depends on Spatial Complexity, but
Exploration Does Not

When participants moved to a single target position and re-
ceived performance feedback based on a single dimension (known

by the participant), they adapted completely within the 96 trials of
the naïve adaptation phase and retained almost everything they had
learned during 48 trials without performance feedback (see Figure
2). The amount of adaptation depended on the number of target
positions. When they were naïve about the perturbation, the groups
that pointed to three target positions adapted less (about one third)
than did the group that pointed to a single target location. The
group that pointed to six target locations on average adapted as
much as did the group with three target locations, but for this
group, the difference with the group that pointed to a single target
position was not statistically significant. When (known by the
participant) the reward depended on the 3�D error rather than on
only the lateral error, there was also less adaptation compared to
when participants performed a one-dimensional task. When in-
formed about the nature of the perturbation, adaptation increased.

For the exploration, in contrast to the adaptation, there was no
statistical evidence that it depended on the spatial complexity: The
lateral exploration did not significantly depend on the number of
target positions or on the task dimensionality (see Figure 3A).
Informing the participants that we had introduced a lateral pertur-
bation had a clear effect on exploration: The perturbation-relevant
exploration increased, whereas the exploration in the perturbation-
irrelevant dimensions decreased (see Figure 3B). As has been
previously reported in the literature (Pekny et al., 2015; Sidarta et
al., 2016), the exploration was larger following nonrewarded trials
than following rewarded trials (see Figure 3C).

Thus, our main finding is that reward-based adaptation depends
on spatial complexity, whereas exploration does not. The finding
that naïve adaptation was possible only when participants moved
to a single target is consistent with reports in the literature that
reward-based adaptation occurs only when participants repeatedly
move to the same target position (Huang et al., 2011; Izawa &
Shadmehr, 2011) and is also consistent with the finding that there
was no reward-based adaptation in a 3�D task in which partici-
pants moved more than one target position (van der Kooij &
Overvliet, 2016).

Our study extends knowledge on reward-based adaptation in
two ways. First, our findings show that visuomotor adaptation was
also not possible when participants moved to a single target in a
three-dimensional task. Second, we showed that providing explicit
information about the presence of a perturbation made reward-
based adaptation possible even when participants moved to mul-
tiple targets. This is consistent with findings that explicit instruc-
tions to counter a perturbation allow participants to learn a more
complex perturbation using error-based information (Bedford,
1993). One could argue that because the naïve adaptation phase
was performed before the informed adaptation phase, increased
adaptation in the informed phase could also have been due to
learning in the previous phase, in line with faster relearning of the
same adaptation, a phenomenon called savings (Huang et al., 2011;
Krakauer, 2009; Zarahn, Weston, Liang, Mazzoni, & Krakauer,
2008). This is unlikely, because there was no evidence of learning
in the naïve phase for the multitarget and multidimensional groups.

The results on exploration equally replicate and extend findings
in the literature. The finding that the exploration decreased when
a participant had just been rewarded (see Figure 3C) replicates
findings that exploration is dependent on the reward history
(Pekny et al., 2015; Sidarta et al., 2016). In the context of motor
adaptation, exploration has not been properly related to spatial
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Figure 3. Exploration. Active exploration. The exploration factor 	
 is the mean additional variability induced
by the feedback, expressed as fraction of the variability without feedback. Presented are medians with
interquartile range. Panel A, left section: Task-relevant dimension. Lateral exploration factor 	
x in the naïve
adaptation phase for the four different groups: 3�D1 (1 – D task, one target position), 1�D1 (1 – D task, one
target position), 1�D3 (1 – D task, three target positions), and 1�D6 (1 – D task, six target positions). Panel A,
right section: Task relevance versus task irrelevance. Vertical exploration factor (	
y) and depth exploration
(	
z) in the naïve adaptation phase of the 3�D1 group (dimensions are task-relevant) and for the 1�D1 group
(dimensions are task-irrelevant). Panel B: The perturbation-relevant lateral exploration factor increases in the
informed adaptation phase (left section). The exploration factor in the perturbation-irrelevant dimensions
decreased in the informed adaptation phase (right section). Panel C: The exploration factor was larger following
nonrewarded trials than following rewarded trials. Error bars indicate the interquartile range. � p � .05. �� p �
.01. See the online article for the color version of this figure.
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complexity yet. Our study suggests that exploration does not
depend on spatial complexity (see Figure 3A). Moreover, the
pattern of exploration did not match the pattern of adaptation in the
different groups in Figure 2B. The 1�D single-target group
adapted the most, yet there was no evidence that this group
explored the lateral dimension more than did other groups, because
it showed the lowest exploration factor. Therefore, it is unlikely
that the influence of spatial complexity on the adaptation was
mediated by differences in exploration. Next we discuss what the
results on adaptation and exploration mean for current theories of
reward-based motor adaptation.

Reinforcement of Successful Movement Plans

The finding that the adaptation in the informed phase did not
depend on the number of target positions contrasts with the idea
that reward-based motor adaptation is action-specific. Reward-
based adaptation is considered action-specific because the rewards
are held to reinforce the executed movement plan, not some higher
order process (Dayan, Averbeck, Richmond, & Cohen, 2014;
Huang et al., 2011; Izawa & Shadmehr, 2011). This idea is
supported by findings that reward-based learning does not gener-
alize across target positions (Izawa & Shadmehr, 2011) and does
not occur without repetition of the same movement direction
(Huang et al., 2011). Such an action-specific learning does not
explain adaptation in the informed stage of our study. Therefore, at
least in the informed phase, another mechanism of reward-based
learning must have contributed to the adaptation. Moreover,
action-specificity of learning does not explain why participants
who performed a three-dimensional, single-target task were unable
to adapt. In the next section, we discuss an alternative mechanism
for reward-based learning.

Learning From Rewarded Exploration

Recently an alternative type of reward-based adaptation has
been proposed. In this type of learning, participants update their
adaptation with rewarded exploration rather than with rewarded
movement plans (Therrien et al., 2016). In the model proposed in
that article, the adaptation is updated following rewarded trials
only, because reward indicates that one made an exploration in the
right direction, whereas reward absence does not provide informa-
tion about the direction of the target: One may have overshot it or
explored in the wrong direction. This type of learning could allow
for action-independent learning, which could explain the action-
independent learning we observed in the informed stage of our
experiment. However, the model also needs to be extended in two
ways to explain the full pattern of data.

Spatial complexity. First, the gain of learning may depend on
spatial complexity. In the naïve adaptation phase, both multidi-
mensional and multitarget groups adapted much less than did the
single target, one-dimensional group. This suggests that the lack of
adaptation may have been due to spatial complexity rather than to
action dependency of learning. Spatial complexity might affect the
adaptation because it may obscure credit assignment and partici-
pants may weight their reward-based learning by trust in the source
of errors (Chen, Mohr, & Galea, 2017). To learn optimally from
rewarded exploration, participants need to determine whether the
reward was caused by noise or by exploration and whether they are
exploring the property that caused the errors.

For the credit assignment that determines which aspect of the
movement caused the reward, it has been shown that participants
can rapidly determine whether curvature or direction is rewarded
(Dam, Kording, & Wei, 2013). In a spatially more complex task,
participants also need to determine whether the cause of errors is
specific to a spatial location or consistent across spatial locations.
Determining this may require a much larger number of trials. Until
credit assignment is solved, participants may use a conservative
learning gain, updating the adaptation with only a portion of the
successful exploration. Similarly, when performing a 3�D task,
participants need to determine the dimensions that caused the
errors. Information about the presence of a perturbation solved
the credit assignment problem and may thereby have facilitated the
reward-based learning. Another way in which spatial complexity
may affect reward-based learning is by affecting perceptual noise,
which has been found to reduce the gain of visuomotor adaptation
(Burge et al., 2008). For instance, pointing to target positions that
differed in three dimensions may have made it more difficult to
discriminate exploration from noise.

Reward-dependent exploration. Second, the data show that
the exploration was not constant, as assumed in the model of
Therrien et al. (2016), but was larger following nonrewarded trials
(as also observed by Pekny et al., 2015; Sidarta et al., 2016). Thus,
participants may update the adaptation following rewarded trials,
whereas they may enhance the exploration following nonrewarded
trials. The benefit of exploring more when being unsuccessful is
that precision can be maintained on the successful trials. The aim
of motor control processes is to minimize not only biases but also
variability (Harris & Wolpert, 1998; Thorp, Kording, & Mussa-
Ivaldi, 2017). Exploration facilitates bias reduction but obstructs
minimization of variability. One way in which the brain may
balance the costs and benefits of exploration is by exploring only
when necessary.

We defined exploration slightly differently from how Therrien
et al. (2016) did, which may explain the finding that the explora-
tion in our study was reward-dependent, whereas the exploration in
the Therrien et al. (2016) study could be explained by a constant
exploration. Therrien et al. (2016) defined exploration as all the
noise that participants have access to, whereas we defined it as
noise that was evoked by the prospect of obtaining reward. There-
fore our study focused on active exploration, which may be more
sensitive to reward-based strategies, whereas the Therrien et al.
(2016) definition may also encompass accidental noise sources.

Explicit and Implicit Processes

Overall, the sensitivity of adaptation to explicit information
about the presence of a perturbation and the reward-dependent
active exploration seems most consistent with an explicit learning
process. Such an explicit process may be a decision-making pro-
cess, not a sensorimotor process. It has for instance been shown
that participants’ performance in a decision-making task can be
used to predict performance on a reward-based visuomotor adap-
tation task (Chen et al., 2017). However, there was no evidence
that explicit awareness of the perturbation was necessary to adapt
in the naïve adaptation phase. Following the naïve and explicit
stage, we administered an explorative questionnaire in which par-
ticipants were asked to draw where they aimed relative to the
target fly (see Figure S2 in the online supplemental materials). On
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this questionnaire, only 35% of the participants in the one-
dimensional single-target group indicated that they aimed to the
left of the target. It is interesting that the other 65% percent of the
participants adapted almost completely to the perturbation,
whereas the participants who indicated that they aimed to the left
tended to overshoot the adaptation by almost a 100%.

Probably, a combination of implicit and explicit process con-
tributes to the reward-based adaptation, as has been found for
error-based adaptation (Benson et al., 2011; Bond & Taylor, 2015;
Mazzoni & Krakauer, 2006; Redding & Wallace, 2006; Taylor et
al., 2014). An interesting question for future research is whether
implicit and explicit processes of reward-based motor adaptation
are fundamentally different. For instance, implicit learning may
rely on reinforcement of successful movement plans (Izawa &
Shadmehr, 2011), whereas explicit learning may rely on learning
from rewarded exploration (Therrien et al., 2016). Alternatively,
both processes may occur on a combination of implicit and explicit
levels of processing.

Conclusion

Together the results show that the scope of reward-based learn-
ing in visuomotor adaptation is not limited to learning from rep-
etition of the same movement. Adaptation in multitarget tasks may
be hindered by spatial complexity, resulting in problems with
credit assignment, rather than by the lack of movement repetition.
Exploration did not depend on the spatial complexity but was
reduced on rewarded trials and increased after suggesting a dimen-
sion to explore.
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