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In the analysis of movement data it is common practice to use a low-pass filter in order to reduce
measurement noise. However, the choice of a cut-off frequency is typically rather arbitrary. The aim of
the present study was to evaluate a new method to find the optimal cut-off frequency for filtering
kinematic data. In particular, we propose to use rigid marker clusters to determine the dynamic precision
of a given 3D motion analysis system, and to use this precision as criterion to find the optimal cut-off
frequency for filtering the data. We tested this method using a model-based approach in a situation in
which measurement noise is a serious concern, namely the registration of the kinematics of swimming
using a video-based motion analysis system. For the model data we found that filtering the data with
a single cutoff frequency of 6 Hz under some conditions decreased the accuracy of the reconstruction
of the kinematics compared to using the unfiltered data. If the cut-off frequency was used that yielded
optimal dynamic precision, then the accuracy improved by 29% compared to using raw data irrespective
of the cluster position, close to the optimal accuracy improvement of 30%. We confirmed in an
experiment that the cut-off frequency at which optimal precision was found varied between cluster
positions and subjects, similar to the results obtained with the model. We conclude that 3D motion
analysis systems can be made more accurate by optimising the cut-off frequency used in filtering the data
with regard to their precision. Furthermore, the dynamic precision method seems useful to evaluate the
effect of various filtering procedures.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Motion analysis is widely used to study human motor beha-
viour. As measurement noise is inevitable, it is common practice
to low-pass filter the kinematic data in order to reduce the effects
of measurement noise. If the relevant frequency content of the raw
signal is known, then numerous methods are available to distil the
relevant signal. However, in movement analysis it is often
unknown which part of the frequency content represents the
actual movement. In that case, the experimenter has to choose
an appropriate filtering procedure, and decide what cut-off
frequency should be chosen in this procedure. Using a high
cut-off frequency removes only very little noise, whereas a low
cut-off frequency will introduce artefacts in the trajectory.

Bartlett (2007) stated that cut-off frequencies between 4 and
8 Hz are often used in filtering movement data. In most studies,
the arguments for choosing a particular smoothing procedure
and cut-off frequency are not specified, even though several quan-
titative measures have been proposed to objectively determine the
optimal filtering procedure (Corradini et al., 1993; Cappello et al.,
1996). These measures are based on the difference between the fil-
tered and raw data. An alternative for optimising filtering in case
the relevant frequency spectrum is unknown, which has not been
recognised and investigated before, is to use the resulting precision
of the 3D motion analysis system in question as a criterion for find-
ing the optimal filtering frequency. We investigated the merits of
this new dynamic precision method in the kinematic analysis of
underwater swimming, where high-precision motion analysis sys-
tems with active markers based on infrared technology, such as
Optotrak�, cannot be used due to the aquatic environment and
passive, video-based systems have to be used instead. Moreover,
experimental set-ups for underwater 3D reconstruction using
video cameras (e.g. Ceccon et al., 2013; Silvatti et al., 2013) were
found to be less precise compared to values obtained above water
(Ehara et al., 1995). Therefore, underwater environments represent
a context where optimising precision is of particular concern.

The precision of motion analysis systems is usually assessed
under either static or dynamic conditions. In static conditions,
the average deviation in the reconstruction of non-moving marker

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jelekin.2015.06.004&domain=pdf
http://dx.doi.org/10.1016/j.jelekin.2015.06.004
mailto:s.schreven@vu.nl
http://dx.doi.org/10.1016/j.jelekin.2015.06.004
http://www.sciencedirect.com/science/journal/10506411
http://www.elsevier.com/locate/jelekin


Fig. 1. Kinematic model viewed from behind (top) and from the side (bottom).

S. Schreven et al. / Journal of Electromyography and Kinesiology 25 (2015) 808–814 809
coordinates from the known positions is taken as a measure of
accuracy. In dynamic conditions, precision is determined by calcu-
lating the variation in distance between two or more markers fixed
on a rigid body moving through the calibrated volume (Haggard
and Wing, 1990). Since movement analysis systems are used to
reconstruct movements, the precision in dynamic conditions is
more important than in static conditions. Ideally, precision should
be determined during the registration of the movement of interest
itself (e.g. swimming). As far as we know, however, no study to
date has determined the precision of a motion analysis system in
this manner. Here, we will test whether this dynamic precision
method yields a filter frequency that corresponds to the one that
optimises filtering. This can be done using any set of filters; in
the present study we will use it to determine the optimal filter fre-
quency of a Butterworth filter.

Quantifying underwater motion is important in the study of
swimming because, as in many other sports, technique is consid-
ered one of the most important factors for achieving a good perfor-
mance. Technique has been studied mostly by determining
temporal and spatial characteristics of the stroke (e.g. Suito et al.,
2008; Rouard, 2011). Some authors have examined arm trajecto-
ries in relation to the generation of propulsive force (e.g.
Schleihauf, 1979; Berger et al., 1995) and performance level (e.g.
Deschodt, 1996). However, as pointed out by Ceccon et al.
(2013), the majority of kinematic studies do not provide a full
description of joint kinematics in terms of Euler angles. This might
be related to the poor visibility of bony landmarks during the
stroke and the complex calculations that are needed to convert
kinematic data to Euler angles. To determine segment orientations,
additional technical markers on the skin of the subject may be
used, a method called the Calibrated Anatomical System
Technique (CAST) (Cappozzo et al., 2005). Recently, Ceccon et al.
(2013) were the first to employ this technique in swimming
research. They concluded that the use of additional technical mark-
ers led to an increase in the percentage of video frames in which
segment positions and orientations could be determined.

In the present study, technical markers were not only used for
good visibility in the video captures, but also to determine the
dynamic precision of the movement registration used by placing
the technical markers as rigid body clusters on the segments. In
particular, we employed actual swimming data and simulations
with added measurement noise to determine the dynamic preci-
sion of a bout of movement registration, and subsequently used
this precision to optimise filter frequency. For each rigid body
(with several markers attached to it), we determined how dynamic
precision depended on the filter frequency, and determined the
frequency (fdp) that yields optimal dynamic precision of the result-
ing movement registration. We obtained similar results for both
model and experimental data. We used the model simulation to
check that fdp corresponded to the cut-off frequency that optimised
the accuracy.

2. Methods

2.1. Model

We used a model of the swimming movement (corrupted by
measurement noise) to establish to what extent the filter fre-
quency at which optimal dynamic precision was achieved
improved accuracy (i.e. improved reconstruction of the uncor-
rupted trajectory). The model of Payton et al. (1997) incorporates
the movement of the trunk and arm to simulate the front crawl
movement in swimming. It was used to study swimming kinemat-
ics and is therefore suitable to address the current research ques-
tion. The model (see Fig. 1) consists of the following segments:
trunk (half width: Q to S), upper arm (S to E) and forearm/hand
(E to H). By supplying the angle-time profiles for the body roll
angle (h), shoulder abduction angle (a), elbow flexion angle (b)
and shoulder extension angle (/), in combination with the trunk
midpoint position Q, the kinematic data of the swimming move-
ment can be generated.
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The angle time profiles as described in the methods section of
Payton et al. (1997) were converted to the following five
equations:

hðtÞ ¼ hmax sin p t
tpull

� �
ð1Þ

aðtÞ ¼ 1
2
amax 1� cos 2p t

tpull

� �� �
ð2Þ

bðtÞ ¼ 1
2

bmax 1� cos 2p t
tpull

� �� �
ð3Þ

/ðtÞ ¼ 180
t

tpull
ð4Þ

Q xðtÞ ¼ vswimt ð5Þ

The maximum body roll (hmax), shoulder abduction (amax) and
elbow flexion (bmax) angles were set at 45�, 90� and 60�, respec-
tively. The swim speed (vswim) was fixed at 1.6 m s�1. The lengths
of the trunk (Q to S), upper arm and forearm/hand segments were
modeled to be 0.25 m, 0.35 m and 0.50 m, respectively. Three mar-
ker clusters consisting of three markers each (see Fig. 2) were
added to the model at the most distal position on the upper arm
and forearm/hand segment and at the most cranial position on
the trunk. Raw real world marker data were obtained by adding
Gaussian noise (r = 1.4 mm) to the x, y and z marker coordinates
generated by the model. In this manner, the model generated a
dataset of 100 swimming trials with a long pull duration time
(tpull = 0.75 s) and 100 swimming trials with a short pull duration
time (tpull = 0.60 s).

Subsequently, the real world marker data were filtered with a
zero lag, second order low pass Butterworth filter. This filtering
removed some of the added measurement noise, but also intro-
duced artefacts. By using various cut-off frequencies ranging
between 2 and 14 Hz (the same for all markers of a cluster) we
could establish the effect of filtering on the accuracy (difference
between filtered signal and original signal without noise). The
accuracy was compared between values obtained with raw data,
using a cut-off frequency of 6 Hz, the cut-off frequency (fdp) at
which dynamic precision was optimal, and the cut-off frequency
(fopt) for which accuracy was optimal. The cut-off frequency of
6 Hz was chosen for comparison, since it was previously used
Fig. 2. The rigid body with three
(e.g. Cappaert et al., 1995; Gourgoulis et al., 2008) in filtering
underwater kinematic front crawl data.

The dynamic precision rdist was based on the standard devia-
tion of the distances between marker points AB, BC and AC and cal-
culated as follows for each of the rigid bodies:

rdist ¼mean rAfBr;rArBf ;rBfCr;rBrCf ;rAfCr;rArCfð Þ ð6Þ

where rAfBr represents the standard deviation of the distance
between marker points A and B, based on the filtered position data
of marker A (subscript f) and the raw position data of marker B
(subscript r). rArBf represents the standard deviation of the distance
between markers A and B, based on the raw position data of marker
A and the filtered position data of marker B, and so on.

As a measure for the accuracy of the data processing, we used
the root mean squared difference (RMSD) between the (un)filtered
data and the modeled data (without noise) for the three markers:

RMSD¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
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X3

i¼1
Aproc

n;i �Amodel
n;i

� �2
þ Bproc

n;i �Bmodel
n;i

� �2
þ Cproc

n;i �Cmodel
n;i

� �2
� �s

ð7Þ

where the superscript model refers to the modeled kinematic data
(without noise) and the superscript proc refers to the data after
addition of measurement noise (raw or filtered). The subscript i
refers to the data from the x (i = 1), y (i = 2) and z (i = 3) axis, respec-
tively. N represents the number of kinematic data points.

For each trial the RMSD was determined when no filtering was
applied (RMSDnofilt), at a cut-off frequency of 6 Hz (RMSD6Hz), at
the cut-off frequency at which the optimal value for dynamic pre-
cision was found (RMSDdp), and at the cut-off frequency at which
the optimal value for accuracy was found (RMSDopt), in order to
establish the effect of different cut-off frequencies on the accuracy
of the resulting data.

2.2. Experiment

To determine whether the characteristics of fdp as determined
by using the model corresponds to that during actual swimming,
measurements of the front crawl movement were obtained from
five swimmers. The experimental protocol was approved by the
ethical committee of the Máxima Medical Centre (Eindhoven).
The subjects (see Table 1) signed an informed consent form prior
to participation. Sets of three LEDs clustered on a rigid body (see
Fig. 2) were placed on three positions on the body: the chest, the
LEDS (A–C) mounted on it.



Table 1
General information about the subjects.

Subject Gender Body height
(cm)

Body mass
(kg)

Years of competition
experience

1 F 164.5 53 7
2 F 170.0 61 6
3 M 183.0 72 10
4 F 171.0 52 5
5 M 175.5 59.5 5
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right upper arm and the right forearm. LEDs were used to have
clearly visible markers; none of the swimmers did complain about
the rigid bodies affecting their swimming. After a 15 min warm up,
swimmers performed a 200 m front crawl race in a 50 m pool start-
ing and finishing the race with a turn. They were instructed to
complete the 200 m distance in the shortest possible time, without
any instruction about race strategy.

Two cameras (Basler, scA1400-gc, 30 fps), fixed in the wall at
35 m and 45 m from the start of the pool, were used to determine
the average swimming velocity and stroke frequency in this part of
the pool during the first lane of the race. Furthermore, six cameras
(Basler, 30 fps) were placed (see Fig. 3) in an underwater housing
at the bottom of the pool (2.20 m depth) to record the swimming
movement at the end of the first lane. The data from these cameras
were combined using Direct Linear Transformation (DLT) algo-
rithm and employed for motion analysis of the swimming stroke.
A pulse generator (National Instruments, Texas, USA) was used to
trigger the cameras and synchronization of the six cameras was
accomplished by activating a LED positioned next to the calibrated
volume, which was visible in the video captures.

Prior to the measurements, the intrinsic camera calibration
parameters were determined from underwater camera captures
of a checkerboard using the ‘Camera Calibration Toolbox’
(Bouguet, 2008) in Matlab (The Mathworks). The intrinsic parame-
ters were used to correct image coordinates for radial and
Fig. 3. Positioning of the two cameras (cam 1 and 2) in the wall and the six cameras
(cam 3–8) used for 3D reconstruction around the calibration volume (grey square).
Camera coordinates are given in meters relative to the upper left corner of the
calibration volume.
tangential distortions. Subsequently, 23 control points on a
2 � 1 � 1 m calibration frame were used to determine the 11 DLT
constants per camera (Abdel-Aziz and Karara, 1971).

We collected data during the underwater part of a single arm
stroke. The 3D kinematic data were determined by manually iden-
tifying the markers in each frame (by a skilled operator using a
custom-made Matlab script). After identification of the image coor-
dinates, the 3D coordinates for each of the markers were calculated
based on the DLT method. In frames where the 3D coordinates
could not be calculated due to lack of visibility of the markers in
the video footage, the missing values were linearly interpolated if
data were not missing in more than three subsequent frames.
Calculated coordinate data were also replaced by linearly interpo-
lated data points in frames where the reconstructed distance
between two marker points on the rigid body deviated more than
4 standard deviations from the mean reconstructed distance.
Subsequently, the 3D coordinates of each marker were filtered
with a second order low pass Butterworth filter. The effect of filter-
ing on precision was established by using various cut-off frequen-
cies between 2 and 14 Hz (the same for all markers of a cluster) to
determine whether differences were present in fdp between sub-
jects and cluster positions.
2.3. Statistical analyses

Statistical analyses were performed on the results of the model
simulations. A repeated measures ANOVA was used to determine
the effect of cut-off frequency (no filtering, 6 Hz, fdp and fopt) on
the accuracy of the kinematic data (RMSD). Furthermore, a 3 � 2
mixed ANOVA was used to determine the difference in fdp and fopt

between both cluster positions (chest, upper arm and forearm) and
between both pull times (short and long). Mauchley’s test of
sphericity was used to correct the degrees of freedom of the
ANOVA. The Huynh–Feldt correction was used if the
Greenhouse–Geisser epsilon was greater than 0.75. Otherwise,
the Greenhouse–Geisser correction was used. If a significant main
effect was found, post hoc analysis was performed using
Bonferroni corrected pair-wise t-tests. Partial eta squared was cal-
culated as a measure of effect size.
3. Results

3.1. Model

The effects of cut-off frequency on dynamic precision are shown
for a characteristic trial of the simulated data in Fig. 4. As can be
seen, dynamic precision is not only dependent on cut-off fre-
quency, but also on cluster position. As expected, the curves all
show a minimum, corresponding to the optimal dynamic precision.
The frequency fdp for which this optimum was obtained differed
between the three cluster positions.

The accuracy values resulting from the different filtering proce-
dures applied to the kinematic data from the model are shown in
Fig. 5. Filtering with 6 Hz (light grey bars) reduced the accuracy rel-
ative to the raw data (white bars) for some cluster/pull time com-
binations. The accuracy as obtained using the filter frequency given
by the dynamic precision method (dark grey bars) was very close
to the optimal accuracy (black bars).

In the long pull time condition there was a significant main
effect for the different filtering procedures on the accuracy of the
marker clusters at the chest (F(1.7,170.3) = 5650.6, p < .001,
gp

2 = .98), upper arm (F(1.7,164.5) = 2516.0, p < .001, gp
2 = .96) and

forearm (F(1.7,172.6) = 2897.5, p < .001, gp
2 = .97). For all marker

clusters, post hoc analysis revealed significant differences in accu-
racy between all filtering procedures (p < .05). Filtering the



Fig. 4. The relationship between cut-off frequency and the dynamic precision (rdist)
in a single trial (long pull time) of the model data.
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simulated chest data with a 6 Hz cut-off frequency improved the
accuracy by 37 ± 4% compared to the accuracy of the unfiltered
data. The dynamic precision method improved accuracy by
43 ± 5% relative to the unfiltered values, which is close to the max-
imal possible improvement (44 ± 4%) using the optimal filter fre-
quency. For the upper arm we found that filtering with cut-off
frequency of 6 Hz improved the accuracy by 17 ± 5% in comparison
with the accuracy of the unfiltered data. Filtering with fdp and fopt

improved accuracy by respectively 27 ± 4% and 28 ± 4% relative to
the unfiltered values. Filtering with 6 Hz reduced accuracy by
4 ± 6% with respect to the accuracy of the unfiltered data for the
Fig. 5. Mean (±inter-trial standard deviation) accuracy values using the different
filtering procedures.
forearm kinematic data. In contrast, filtering using the cut-off fre-
quencies fdp and fopt improved the accuracy relative to the unfil-
tered data by respectively 22 ± 3% and 23 ± 3% for the forearm
marker cluster.

Also in the short pull time condition we found a significant
main effect of the filtering procedure on the accuracy of the
marker cluster at the chest (F(1.5,146.2) = 4346.0, p < .001,
gp

2 = .98), upper arm (F(1.7,168.6) = 5748.3, p < .001, gp
2 = .98)

and forearm (F(1.4,136.1) = 9505.5, p < .001, gp
2 = .99). Post hoc

analysis revealed significant differences in accuracy between all
filtering procedures for each marker location (p < .05). Filtering
the kinematic data from the chest marker cluster with a
cut-off frequency of 6 Hz led to a 36 ± 4% better accuracy com-
pared to the accuracy of the unfiltered data. Filtering at cut-off
frequency fdp improved accuracy by 41 ± 5% relative to the unfil-
tered values. The maximal improvement through filtering was
42 ± 5% by using fopt as filter frequency. For the upper arm kine-
matic data, filtering with a cut-off frequency of 6 Hz deteriorated
the accuracy by 32 ± 8% relative to the accuracy of the unfiltered
kinematic data. Filtering the kinematic data with cut-off frequen-
cies fdp and fopt improved accuracy by respectively 21 ± 4% and
22 ± 3% with respect to the accuracy of the unfiltered data.
Filtering with a cut-off frequency of 6 Hz also reduced accuracy
by 57 ± 10% with respect to the accuracy of the unfiltered data
for the kinematic data of the forearm marker cluster. When
the data were filtered using the cut-off frequencies fdp and fopt

the accuracy relative to the unfiltered data improved by
18 ± 3% for both frequencies.

The cut-off frequencies that resulted in optimal dynamic preci-
sion and optimal accuracy are shown in Fig. 6. We found a signif-
icant main effect for cluster position on fdp (F(2.0,390.3) = 3567.7,
p < .001, gp

2 = .95) and fopt (F(2.0,386.5) = 15482.8, p < .001,
gp

2 = .99). The post hoc analysis showed significantly different val-
ues for fdp and fopt between the marker cluster placed on the chest,
upper arm and forearm. We also found a significant main effect for
pull duration on both fdp (F(1,198) = 268.6, p < .001, gp

2 = .58) and
fopt (F(1,198) = 958.9, p < .001, gp

2 = .83). Overall, the post hoc
Fig. 6. Mean (±inter-trial standard deviation) cut-off frequencies at which optimal
dynamic precision (fdp, in Hz) and optimal accuracy (fopt, in Hz) were obtained with
the model data for the chest (square), upper arm (circle) and forearm (diamond)
marker cluster in the long (closed symbols) and short (open symbols) pull time.
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analysis revealed significantly higher values for fdp and fopt in the
short pull time condition compared to the long pull time condition.
Also a significant interaction effect was found between cluster
position and pull time for fdp and fopt. The post hoc analysis
revealed that the value of fdp for the chest marker cluster was
not significantly different between the short and the long condition
(F(1,198) = 1.48, p = .226). For the upper arm (F(1,198) = 151.69,
p < .001) and forearm marker cluster (F(1,198) = 225.57, p < .001)
a significant difference in fdp was found. For fopt, significant
differences between the short and long condition were found for
the marker clusters at the chest (F(1,198) = 5.08, p = .025), the
upper arm (F(1,198) = 792.42, p < .001) and the forearm
(F(1,198) = 516.83, p < .001).

3.2. Experiment

The results with respect to the effect of different cut-off fre-
quencies on dynamic precision (rdist) during actual swimming
are shown for an exemplary subject in Fig. 7. The curves in this fig-
ure are comparable to those in Fig. 4: also for actual swimming
data there is a minimum in the dynamic precision, and the rela-
tionship between cut-off frequency and precision is dependent
on cluster position and subject. Therefore, the cut-off frequency
at which the dynamic precision is optimal varies between cluster
positions and subjects (see Table 2).
Fig. 7. The relationship between cut-off frequency and dynamic precision (rdist) for
the experimental data of subject 2.

Table 2
Cut-off frequencies at which optimal dynamic precision (fdp, in Hz) was found per
rigid body in the experimental data. The number of kinematic data points in the signal
is shown between brackets below the cut-off frequency. The cut-off frequency fdp was
found to be different between subjects and cluster positions.

Subject Cut-off frequency (Hz) at lowest rdist

Chest Upper arm Forearm

1 5.7 (n = 32) 14.0 (n = 28) 10.4 (n = 31)
2 6.7 (n = 30) 9.1 (n = 24) 8.3 (n = 30)
3 4.6 (n = 34) 13.9 (n = 23) 10.0 (n = 25)
4 –a 6.6 (n = 34) 8.9 (n = 36)
5 13.2 (n = 39) 7.9 (n = 28) 11.1 (n = 31)

a In subject 4, the 3D position of the chest markers could not be reconstructed
due to limited visibility of the markers.
4. Discussion

In the present study we examined the effect of filtering on the
accuracy of a video-based 3D motion analysis system. In doing
so, we focused on the underwater phase of the swimming stroke
in view of the challenges it poses for accurate measurement. The
effect of filtering data from a kinematic model with a cut-off fre-
quency of 6 Hz, which was used in previous studies to filter under-
water kinematic data, turned out to be dependent on cluster
position and pull time. It was found that the commonly used pro-
cedure to filter position data using a fixed cut-off frequency for all
the markers not always led to an improvement of the accuracy of
the kinematic data, but could even decrease the accuracy. This
result suggests that a good method for determining a filter fre-
quency is needed.

The results from the model showed that by filtering with the
cut-off frequency that leads to optimal dynamic precision per trial
and per cluster position, the accuracy was improved irrespective of
cluster position. Using this method, the accuracy was on average
29% better compared to the values based on the raw data.
Therefore, the method to filter kinematic data using the cut-off fre-
quency at which the variability in reconstructed distances between
markers on a rigid body is lowest, led to improved accuracy.
Filtering the data with the cut-off frequency that led to optimal
accuracy resulted in an average improvement of 30% in accuracy,
so the dynamic precision method yielded an improvement of about
97% of the maximal effect that can be achieved by filtering. In the
present study we tested the dynamic precision method in a ‘low
precision’ video based underwater motion analysis system; there-
fore the results we presented pertain to these conditions. However,
in principle, the method could be applied in similar fashion to
improve accuracy in a non-aquatic environment and when using
‘high precision’ motion analysis systems like Optotrak�.

The value for dynamic precision found in the experimental part
of the present study is better than the precision obtained in
dynamic conditions found by Ceccon et al. (2013). In the current
study the coefficient of variation (the ratio of the standard devia-
tion to the mean times 100%) was 2.90%. Ceccon et al. (2013) found
a coefficient of variation of 7.58% for a 10 cm reference wand mov-
ing through the calibrated, underwater volume. Silvatti et al.
(2013) compared different calibration procedures and found a
coefficient of variation as low as 0.24% for a 3 m wand, which is
much larger than the rigid body used in our study to calculate
dynamic precision. In contrast to the aforementioned studies in
which a wand was moved through the calibrated volume, we stud-
ied the precision during the underwater phase of the stroke. The
motion of the wand might not mimic the swimming movement
to a sufficient degree to determine the precision of the system
achieved during the actual swimming stroke. The movement of
the body parts through the water generates extra bubbles, which
most likely increases reconstruction errors due to additional
refraction. In addition, different calibration procedures (Silvatti
et al., 2013), camera positions and camera resolutions could have
caused differences in precision between studies. As pointed out
by Figueiredo et al. (2011), the precision obtained in motion anal-
ysis systems for swimming is influenced by image distortion and
by errors related to digitisation and 3D reconstruction (Payton
and Bartlett, 1995; Kwon and Casebolt, 2006). We conclude that
3D motion analysis systems can be made more accurate by filtering
the data using the cut-off frequency that yields optimal precision.
Although we applied the dynamic precision method in the current
study only to determine the optimal cut-off frequency in an aqua-
tic environment, it can be used to optimise and evaluate other
aspects of filtering (e.g. smoothing technique and filter order)
and in any environment.
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Bartlett (2007) already proposed to use different cut-off fre-
quencies for different marker positions on the body. He argued that
it is likely that swimming technique influences the frequency spec-
trum of the signal, which could explain the difference in optimal
cut-off frequency between different positions on the body and
their interaction with the subject (Bartlett, 2007). This could be
why there was a significant effect of cluster position and pull time
on the cut-off frequency resulting in optimal dynamic precision
with our model simulations. Also the experimental data during
actual swimming showed large variations in the cut-off frequency
for optimal precision between cluster positions. The differences in
motion between body segments and between subjects seem to
result in different frequency spectra of the signals, which could
lead to the differences in the optimal cut-off frequencies.
Moreover, the fact that this optimal frequency differed consider-
ably between subjects underscores that the filter frequency should
be based on an assessment of the dynamic precision of the mea-
surement system in question, and cannot, and should not, be based
on a simple rule of thumb. However, whether it is feasible and nec-
essary to apply this method per subject and per segment will most
likely depend on the requirements of each study and is therefore
the choice and responsibility of the researcher.
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