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course of its interaction with the world, the human nervous system must
constantly estimate various variables in the surrounding environment.
Past research indicates that environmental variables may be represented
as probabilistic distributions of a priori information (priors). Priors for
environmental variables that do not change much over time have been
widely studied. Little is known, however, about how priors develop in
environments with nonstationary statistics. We examine whether humans
change their reliance on the prior based on recent changes in environ-
mental variance. Through experimentation, we obtain an online estimate
of the human sensorimotor prior (prediction) and then compare it to
similar online predictions made by various nonadaptive and adaptive
models. Simulations show that models that rapidly adapt to nonstationary
components in the environments predict the stimuli better than models
that do not take the changing statistics of the environment into consid-
eration. We found that adaptive models best predict participants’ re-
sponses in most cases. However, we find no support for the idea that this
is a consequence of increased reliance on recent experience just after the
occurrence of a systematic change in the environment.

dynamic prior; Kalman filter; nonstationary environment; sensorimotor
control

IN THE SPORT OF CRICKET, IT is common practice for captains to
introduce a slow-pitching bowler after the opponent batsman has
faced a long spell of fast bowling. The assumption is that batsmen
learn the statistics of the bowling distribution and rely on these to
make predictions for the next ball. However, such learned statis-
tics are rendered uninformative when the bowler is changed. The
batsman should therefore best lower his reliance on past experi-
ence until he has learned the statistics of the new bowling distri-
bution from fresh observations.

Past research indicates that learned variables may be stochas-
tically represented as a priori distributions or priors (Knill and
Richards 1996; Weiss et al. 2002; Koerding and Wolpert 2004;
Adams et al. 2004; Berniker et al. 2010; Ernst 2007; Knill 2007;
Turnham et al. 2011; Verstynen and Sabes 2011). In this study, we
are interested in priors that represent the prediction of the nervous
system when engaged in an online estimation problem, like in the
aforementioned cricket example. If the statistics of the environ-
mental variable in question change over time, we expect to find
the extent to which one relies on the prior pertaining to this
variable to change as well. It is worth noting that the prediction or
prior we refer to here is not a single value but assumed to be a
probability distribution. The estimate of the prior refers to the mean
of this distribution and the reliance that we refer to is the inverse of its
variance. Unlike most previous work in this area, we assume that
the distribution of the prior changes over time.
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In the event of abrupt systematic changes, temporarily reducing
one’s reliance on the prior will result in reduced overall error. We
assume that people determine the statistics of their environment
based on previous observations, and we therefore design an ex-
perimental environment such that optimal performance is attained
by relying on only a few past trials to determine the variance of
the prediction. We test human participants’ performance in this
environment in which the average required response sometimes
changes abruptly. Throughout the experiment, participants en-
counter interspersed trials in which sensory information about the
stimuli is present in that trial or is absent. When sensory infor-
mation is absent on a trial, the response represents a noisy readout
of the mean of the participant’s a priori prediction (prior) at that
time. We thus obtain an online estimate of the mean of the
sensorimotor prior and proceed to fit various models to understand
how the system’s dependence up priors is determined. If partici-
pants do not update their reliance on the prior after the occurrence
of abrupt changes that cause a change in the mean of the observed
environmental variable, we expect models like the Kalman filter
(Kalman 1960) to closely predict such behavior. The Kalman
filter in its standard implementation assumes that the variance of
the prior and of the observation do not change over time and is
therefore considered stationary. However, if humans were to use
such a model, it is not clear how the brain would determine the
value of its parameters. We propose that humans may be using a
model that can estimate its own parameters recursively through an
evaluation of the observed environment. Such a model that recur-
sively estimates its own parameters based on the requirements of
the observed environment is referred to as adaptive.

While the Kalman filter has been used to explain behavior in
a variety of sensorimotor tasks, in some cases it has failed to
predict observed human learning rates leading to the sugges-
tion that humans may not always assume the statistics of the
environment to be stationary (Burge et al. 2009). Other work
has explored this issue using frameworks other than the Kal-
man filter, but these models have only successfully been
applied to environments where no systematic changes occur in
the mean of the environmental variable and only the variance
is altered (Berniker et al. 2010). In the present work, we
combine elements from these works and suggest a modification
for the Kalman filter that would enable it to increase its reliance
on newly observed information from the environment when
systematic changes occur. Such an adaptive Kalman filter
would enable faster responses to systematic changes compared
with the stationary Kalman model. For the stationary Kalman
filter, the mean value of the prediction is influenced by the
mean of the previous trial’s prediction but the variance of this
prediction is invariant over time. In the adaptive Kalman
models we propose, we additionally make the variance of the
prediction depend on the variance of the observed environmen-
tal process over a window or exponent of past trials.
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In addition to these models, we test two adaptive models
(Adams and MacKay 2007; Berniker et al. 2010) proposed in
literature, which both address the problem of predicting vari-
ables in dynamic environments but do not use the Kalman
framework. What interests us most in this study is whether
adaptive models can provide a more convincing approximation
to measured human behavior than a stationary model.

MATERIALS AND METHODS

Experimental paradigm. The Ethical Committee of the Faculty of
Human Movement Sciences, VU University approved the program to
which this study belongs. Eight healthy right-handed adult volunteers
(6 naive, 5 female) consented to participate in the study. There were
no systematic differences in the data that distinguished the naive and
nonnaive participants. Participants were seated in the dark at a setup
with their hands resting on a horizontal tablet surface (Wacom
Digitizer UD-1825-A, 45.7 X 63.5 cm) upon which they saw com-
puter generated images (refresh rate: 85 Hz; resolution: 1,024 X 768
pixels) (Brenner and Smeets 2009). A stylus, lit at the tip by an LED,
was used to make responses. Participants were asked to use the stylus
to intercept a moving visual target (Gaussian blob with 10% peak
contrast and 10-mm SD on a 12.6 cd/m? gray background) at a fixed
location (point of interception) marked with a cross mark (Fig. 1A).
This location was situated 150 mm further than the starting point
along the midline of the participant’s body, so all movements were in
the sagittal direction moving away from the participant. The target
was designed such that it would be detectable to all subjects but
nevertheless would be quite difficult to see. The target always ap-
peared to the left of the starting point and traversed a radial arc of
77.3° with radius 150 mm and the subject’s starting point as the radial

A

Fig. 1. A: time courses of the two types of trials. The
marked point of interception is the cross mark.
Dashed lines illustrate the path of the visible target
and solid lines that of the stylus. B: example of
target distribution over the course of the experiment.
Stimulus times for visible-target trials (blue circles)
were drawn from 1 of 2 Gaussian distributions (in
gray). Invisible-target trials (orange squares) were
treated (for feedback on performance) as if they
arrived at the mean times of these distributions. For
each subject, stimulus time-to-interception values |

were independently drawn from the same distribu- 1200
tion. For the first 50 trials, we only plot 1 in 10

Visible -Target

w

center. The participant initiated the trial by moving to a start position.
The color of the start position indicated the type of trial; if blue, the
target would be visible during the trial (visible-target trial), and if
orange, the target would move invisibly (invisible-target trial).

Participants were encouraged to compete with fellow participants
based on the scores they obtained and were made aware of their
ranking among other participants. Invisible target trials carried twice
as many points as visible target trials, if intercepted. At the end of
each trial, a graded score was awarded with a maximum of 100 points
if the response was within 2 mm of the target center (along the arc),
and fewer points were awarded as the error grew larger. The awarded
points and cumulative score were displayed. Additionally, for visible-
target trials, the position of the target when the stylus reached the
point of interception was shown to make the error in the participant’s
timing explicit.

Within a trial, the target always moved at a constant angular
velocity, but the velocity varied across trials. The time to inter-
ception of the stimulus was sampled from different distributions.
To make the transition between blocks difficult to detect, the
distributions were selected such that they overlapped (Fig. 1B). For
the first 50 trials, the stimulus time to interception of the target was
drawn independently from an almost noise-free Gaussian distribution
(mean: 900 ms, SD: 1 ms). Thereafter, the experiment consisted of 5
blocks of 100 trials in which the stimulus time to interception was
independently drawn from one of two Gaussian distributions (mean:
800 and 1,000 ms, SD: 50 ms). Each block consisted of trials drawn
from one of these two distributions. Every third trial within a block
was an invisible-target trial.

Analysis of responses. Responses that deviated by >2.5 mm from
the indicated point of interception were discarded (<<1%). The time at
which the stylus passed the point of interception was corrected for a
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constant delay in the tablet hardware (estimated to be 62 ms; Brenner
and Smeets 2009; Di Luca 2011). The temporal error was determined
as the time difference between when the target and stylus passed the
point of interception.

Generative models. Our purpose here is to investigate whether
adaptive models fare better than commonly utilized stationary models
in explaining online data of the human prior in a nonstationary
environment. To this end, we compared several types of algorithms
and frameworks.

We began with one of the most prevalent computational frame-
works for online state estimation of the sensorimotor system, the
Kalman filter (Korenberg and Ghahramani 2002; Wolpert and Ghah-
ramani 2000; Baddeley et al. 2003; Burge et al. 2008; Wei and
Kording 2010; Izawa and Shadmehr 2011; Wolpert 1997; van Beers
2012). The Kalman filter combines the information from a noisy
observation with its own a priori prediction based on past observation
and its knowledge of the process dynamics (Kalman 1960). The
aforementioned literature on applying the Kalman filter to sensorimo-
tor paradigms assumes that the observation of the variable, and the
prediction from the sensorimotor system, are combined in a definite
proportion (Kalman gain). The Kalman gain is a function of the
variance of the environmental process and the variance of the sensory
measurement (or observation) of the process. It is often assumed that
neither of these variances change over time. The measurement vari-
ance relates to inherent noise in a sensor apparatus, and it is thus
reasonable to assume that it remains stationary.

If the nervous system does not alter its gain much over time, we
expect that subjects will behave in accordance with the standard (or
stationary) Kalman filter. On the other hand, if the nervous system is
sensitive to local changes in the statistics of the environment, we
expect adaptive models with gains dependent on the recent process to
provide a better fit to the data. An adaptive model recursively
estimates its parameters to make better predictions for future obser-
vations from the environment. We develop adaptive Kalman filters
that recursively estimate the variance of the environmental process
based on past observations and adjust the proportion (gain) by which
they rely on their prediction and observation accordingly. These
adaptive models estimate the environment’s variance over a span of
past observations. We propose two different adaptive models that
differ in the dynamics of how they consider past information. The
window model considers a discrete window of past trials to estimate
process variance uniformly whereas the exponent model estimates the
process variance by weighting all past trials exponentially. We de-
signed the environment such that the theoretically optimum window
size of the window model or the time constant of the exponential
model is only a few past trials. If humans are optimal with respect to
adjusting their gain based on variance in a limited number of past
observations, we expect to find a short time window (or time constant)
resulting in rapid adaptation. Using a longer time window, although
not optimal (see Fig. 3), may provide robustness by having a less
fluctuating gain. This would also elicit a decreased responsiveness
towards systematic changes in the environment.

We also tested two models that make predictions in dynamic
environments but do not utilize the Kalman filter framework. The
change-point model (Adams and MacKay 2007) is a recursive Bayes-
ian algorithm that estimates the probability that a change in the mean
of the environmental process has occurred and even infers the
changed statistics. The process that generated our stimuli is a change-
point process, i.e., it consists of abrupt changes (change points) in the
statistics of a sequentially presented variable (Barry and Hartigan
1993), and since the change-point model is specifically designed to
predict and follow change-point processes, we expect it to perform
better than the other models described here.

The accumulator model (Berniker et al. 2010) is also a recursive
Bayesian algorithm that estimates the mean of the state as well as its
variance. In this study, we only have the resources to experimentally
estimate the mean of the prior, so we shall discuss the accumulator

model in this light alone. The accumulator algorithm estimates the
current state as the mean of all past observations. This model therefore
represents the theoretical optimum for an environment that is noisy
and stationary but will not be able to follow systematic changes of the
mean in a nonstationary environment.

General framework for Kalman filter algorithms. The Kalman filter
is an online state estimation algorithm that generates a prediction of
the current state based on the most recent observation, knowledge of
the process dynamics, and its own previous state. The proportion in
which the observation contributes to the estimate is the Kalman gain
(K) of the system and depends on the variance of the prediction
[(0;)?] and the variance in the measurement or observation (07,) of
the environment. The variance of the prediction in turn depends on the
variance of the process (af,k) and the variance of the previous state
estimate (o7_,). For all the adaptive models, the gain of the system
(K) changes over time. The standard Kalman framework customized
for the assumptions underlying our study is described by the following
set of equations:

Prediction of state of the world.

P

Xk = Xk—1
()P =0l +

Update of state estimate given a measurement of the real world/
environmental process.

-\2

Ky = E(Tzk) 2
(O’k) + o),

fk = (l - Kk))?,: + Kka
o= (1= K)(or)?

Here the state estimate (£}), which is the estimate of the state (x)
given noisy information at time k, is updated over time. Before the
next observation (z,) is made at the next discrete time-step, a predic-
tion (¥, ) is generated based on knowledge of the dynamics of the
environment. The prediction (£, ) in these models is the variable we
seek to estimate experimentally from human responses on the invis-
ible-target trials of the experimental study. The variance in the
prediction [(0;)*] and the measurement (07,) determine in what
proportion (gain) the prediction and observation are combined.

Stationary model. We use a standard implementation of the Kalman
filter (Kalman 1960) with stationary process and measurement vari-
ances, a prevalent assumption in perceptual and motor control litera-
ture (Baddeley et al. 2003; Izawa and Shadmehr 2011; Korenberg and
Ghahramani 2002; Wolpert 1997; Wolpert and Ghahramani 2000, van
Beers 2012). The variance of the measurement is the only free
parameter in this model. The experimental process standard deviation
is provided to the model (O'Pk = 50 ms Vk). In our implementation, the
only free parameter for the Stationary Model is the measurement
variance (072,).

Window model. If there are large systematic changes in the envi-
ronment, the variance of the process will increase just after a change
occurred (Fig. 2). An efficient prediction system will use this in-
creased variance as an indication that its prediction has been rendered
unreliable and that under the circumstances, observations are more
reliable. This is characteristic of an adaptive control system and is the
kind of mechanism that allows the controller to momentarily increase
its gain before reaching steady state again. Following this line of
reasoning, we modify the Kalman filter algorithm such that the
process variance (of,k) is dynamically estimated from a window of
past observations as the system experiences the environment over
time. This approach lends the model the ability to adjust its gain based
on the immediate demands of the environment (Fig. 2). The model has
two free parameters: size of the window (7) and variance of the
measurement (o7,).

m
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Recalculation of real-world process statistics based on window of
T past trials.
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Exponent model. 1t is also plausible that the manner of estimating
the past process variance could follow an exponential dynamic,
thereby allowing more recent information to be weighted heavily
while considering the more distant past to a lesser extent (Scheidt et
al. 2001, Baddeley et al. 2003). We modify the Kalman filter algo-
rithm to estimate the variability in the recently experienced process
based on an exponentially decreasing weighting of past observations.
The time constant (7) of the exponent and the variance of the
measurement noise are free parameters.

Recalculation of real-world process statistics based on exponential
weighting with time constant T over past trials.
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Change-point model. The experimental environment used in our
study is nonstationary and can be formally described as a change point
process (Barry and Hartigan 1993). In view of this consideration, the
change-point model (Adams and MacKay 2007), which provides
online inference and detection of changed statistics, is the most
appropriate model for predicting the next stimulus. This online Bayes-

i

Prior Prediction (State) Observation

ian algorithm differs in its implementation from the Kalman filter. At
every time step, based on previous observation and a parameter
(hazard rate {) indicating the rate at which change-points occur (we
assume this to be a constant), it infers the suitability of continuing
with existing statistics of the environment or detecting a change point.
Once a change has occurred, the number of trials until which the
environment is considered stationary is called a “run.” The run length
is estimated online and at each change-point it is reset to zero. Here,
the prediction of the state at a given point (£;) depends on the marginal
probability of the state given the joint probability of all past obser-
vations within the run (r,_,), and existing run length (x',,_,) given all
past observed stimuli observed thus far (x';,_;) (see Adams and
MacKay 2007 for details). We assumed that the generative distribu-
tion between change-points was a Gaussian with an unknown mean
and a standard deviation of 50 ms. The only free parameter for the
change-point model is the hazard rate {.

= E P(Xklx/lzz—l, rz—l)P(Vr—ﬂxl;x—l)
Tt

Accumulator model. The accumulator model is an online Bayesian
estimation algorithm that generates predictions for dynamic environ-
ments. This too differs from the Kalman filter framework. The final state
of the model converges towards the mean of the entire history of the
observed process. The model computes the mean of the prior by estimat-
ing over all past observations (z,) with equal weight given to the entire
history (for details see Berniker et al. 2010). For our purposes therefore,
there are no free parameters in the accumulator model.

Update of parameters (mean of state of the world) over discrete time.

1 k=l

P <

k—1i3

o

Xk

Optimal predictions for stimuli. To quantify the expected differences
among the models, we first determined for which parameters these gen-
erative models would optimally predict the invisible stimuli of the sets
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used in the experiment using least-squares optimization (Fig. 3). We then
used corrected Akaike Information Criteria (AICc) to report the relative
likelihood of each model, which is a comparison of how well each of the
five models can predict the invisible-target stimuli given the visible-target
stimuli (see Burnham and Anderson 2002 for details). We use the
information-theoretic approach to compare our models, and therefore,
concepts like significance levels, error bars, and P values do not apply.
Information-theoretic approaches (like AICc), unlike hypothesis testing,
allow us to compare multiple models simultaneously with respect to each
other while accounting for the number of parameters of each (complexity
of the model).

We found that, like the runs on the stimuli sets, the change-point
model outperforms all other models (Fig. 3). This was expected since
our stimuli follow a change-point process by design. The optimal
hazard rate (£) of the change-point model was approximately five
trials. Of the Kalman filter-based models, the window model performs
the best, with a window size of about four trials. The optimal time
constant for the exponent model is about four trials. Figure 3B shows
an example of how the Kalman gain changes over time for the three
models for one arbitrarily chosen stimulus set. For the Kalman
filter-based models, the update for visible-target trials was performed
in accordance with the filter update equations specified earlier. It is
worth noting that in invisible-target trials, no state update of the mean
of the state was performed. The absence of sensory information is
equivalent to setting o,, to infinity, or the gain to zero, on invisible-
target trials (not plotted to preserve clarity in figures). The gain does
not entirely recover in the immediately succeeding trial, which results
in a jagged profile of the gain function (as seen in Fig. 3B, inset). All
three Kalman-based models, when optimized to the stimuli, yield
roughly the same values for measurement variance. Since we only
estimate the mean of the environmental state estimate, there are no
parameters to optimize for the accumulator model.

Optimal prediction of human behavior. The methods for fitting
models to the participants’ data were similar to those for the optimi-
zation with respect to stimuli, except now the parameter optimization
was performed with respect to the participants’ responses rather than

to the stimuli. Participants were provided with exactly the same
stimulus sets as we tested the models on (Fig. 3). In the least-squares
optimization, the root-mean squared error values for model compar-
isons were computed on differences between model prediction on
invisible-target trials and participant responses on the same trials. All
the Kalman-based models have measurement variance as a free
parameter. Initial values for the process variance are the actual
experimental process statistics that are specified in the same way for
every model (o). The adaptive models additionally had either a
window size or a time constant as a free parameter, while the
change-point model had one free parameter, the hazard rate ().

The model equations are based on subject’s actual observations (z;)
on a single trial. The exact values of the observations are unknown:
we know that they resemble the stimuli but are corrupted with
measurement noise. We performed Monte Carlo simulations in which
random numbers were drawn to simulate the effects of measurement
noise on all models. These simulations showed that since the mea-
surements are independently drawn, when the predictions are aver-
aged over a large number of such simulations, the prediction for each
model was equivalent to the prediction when the model was simulated
with zero measurement variance. We therefore ran our final simula-
tions using the actual stimuli (x,) rather than the observations (z;) in
the above equations. We did, of course, incorporate the variance of the
measurement noise in the update equations.

RESULTS

The invisible-target trials provide us with a noisy online esti-
mate of the participant’s current prediction (prior), which is the
state variable we sought to experimentally estimate. In the visible-
target trials, the prediction is combined with a sensory likelihood,
which yields an estimate of the posterior. We average these
estimates across subjects to give the reader some indication of
how well human participants were able to follow changes in the
given environment (Fig. 4). We find that both for responses on
visible and invisible-target trials, participants conform to the
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Fig. 3. A: relative performance of each model for the given stimulus sets. The optimal parameters for each model are given. Error bars represent the SE in relative
probability across stimulus sets. B: example from a single simulation of the time course of gain changes for the 3 Kalman filters (with optimal parameters).

C: example of all 5 models run on a single stimuli set.
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changes in the environment. In considering the responses to in-
visible-target trials, we find that participants are generally slower
to adapt to the steps in the environment compared with the
responses on visible-target trials. This was to be expected, since
online-corrections are likely to occur in the presence of continu-
ously observed visual stimuli and therefore responses are likely to
be more accurate for visible-target trials.

In Fig. 5, we illustrate the simulations of all models for an in-
dividual dataset (participant 6). Given the knowledge that the
stimuli environment is a change-point process, we know from
earlier calculations (Fig. 3A) that the ideal model for our environ-
ment is the change-point model. Participants, unlike the model
have no knowledge that the global structure of the environment is
a change-point process. Participants therefore could not have
known in advance that the optimal approach to follow our stimuli
would coincide with the change-point model. We designed our
stimuli such that they have very poor information about the
change-points in the environment. It is therefore not surprising
that the participant does not respond to step changes as fast as the
best-fitting change-point model predicts since they had no fore-
knowledge that our stimuli followed a change-point process. Nev-
ertheless, we wanted to use the change-point model to provide us
with an upper performance bound for ideal behavior should the
participant acquire information about change-points. The results
show that this was not the case.

The accumulator model (light gray), as its dynamics dictate,
weighs all past information with equal consideration and produces
aresponse that converges to the mean of all involved distributions.
The responses of the three Kalman filter-based models lie inter-
mediate to those of the change-point and the accumulator models.
It is difficult to visually distinguish the efficacy of the three
Kalman models given the difference in number of parameters and

100 150 200 250 300 350 400 450 500
Trial Number

similarity of output, which is why we compared the models using
information theoretic approaches.

In the Introduction, we reasoned that rapid adaptation to
variations in an environment with nonstationary statistics re-
quires switching to a higher gain following an abrupt change in
the environment. Such behavior would be consistent with that
of the adaptive Kalman models with a small window size or a
short time constant. As we state earlier, the optimal window
size for our stimuli is small (~4 trials) and the optimal
time-constant short (~4 trials). We therefore first ran optimi-
zation routines on the two adaptive Kalman filter models
(window and exponent) for window sizes and time constants of
<50 trials. Simultaneous model comparisons among all five
models were performed using the corrected AICc (Burnham
and Anderson 2002). The relative likelihood we display in
Fig. 6C gives an indication of how well each model performs
in explaining the participant responses with the optimal param-
eters that model has to offer. The relative likelihood is an
information theoretic measure that gives the probability of
correctness of models relative to each other and should not be
confused with hypothesis testing.

The change-point model provides a poor description of the
data even though the hazard rate (3—4 trials) closely matches
the optimal values with respect to the stimuli (5 trials). The
three models based on the Kalman filter perform evidently
better than either the accumulator or change-point models for
each participant. Figure 6A displays how the Kalman gain of
the Kalman-based models changes over the course of the
experiment. The gains for the adaptive models initially plunge
to zero because they correctly estimate the process variance in
the first 50 trials to be almost zero (variance: 1 ms?>). The
Kalman gain becomes larger after the process variance in-

= Stationary Accumulator
* Responses on visible-target trials ———  Window Changepoint
— 1200 ® Responses on invisible-target trials wummmn— Exponent Stimulus distribution
[%) ° means & transitions
§, 1100
&
. . . 2 boe
Fig. 5. A: simulation of the 5 models the parameters ~ § 1000(. ,°
of which were optimized for a single participant. & .
Participant responses for visible (blue circles) and § 900
invisible (orange circles) target trials are also plotted £
in the background. o 800
g
= 700
600 !

| | 1 | 1 1 | 1 | ]
100 150 200 250 300 350 400 450 500 550
Trial Number

J Neurophysiol » doi:10.1152/jn.00605.2012 « www.jn.org

€T0Z ‘v |udy uo nausianiun aluA e /Ao AbojoisAyd-uly:dny woiy papeojumoq



http://jn.physiology.org/

PRIORS IN NONSTATIONARY ENVIRONMENTS 1265

A Kalman Gain for short Windows & Time-Constants

Kalman Gain

Trial Number

mmmm Stationary — msss \\indow

C Optimization over short Window and Time-Constant ranges

Relative Probability
o
[$)]

1L“M
1 2 3 4 5 6 7 8

Participant Number

o

= Exponent

B Kalman Gain for global optima
! \é\ﬁ%“ I T T T
0.5 P h h h !&
0 | | | |
0 200 400

Kalman Gain

Trial Number

Accumulator ~ =mmm Changepoint

Global optima for all parameters

-

y O

Relative I?Drobabilit
o

o

1 2 3 4 5 6 7 8
Participant Number

Fig. 6. A: Kalman gains for all 3 Kalman models for the best short window sizes and time constants (= 50 trials), stationary model (red), window model (green),
and exponent model (blue). Parameters for window size (7) and for time constant (7) are indicated. Participant numbers are indicated at rop right each subpanel.
B: Kalman gains for models with parameters at global minima. C: relative probabilities (from Akaike Information Criteria) for all 5 models for short window
sizes and time constants. D: relative probabilities for global minima for window size and time constant.

creases and fluctuates based on the variance within the window
or exponent span of past trials. In the Introduction, we men-
tioned how such an increase in gain after the onset of a step
change may help the system adapt faster by decreasing reliance
on past knowledge and giving more weight to new observa-
tions, and this is what we observe. The caveat here is the size
of the window and of the exponential time constant that for
many participants were substantially longer (Fig. 6A) than the
optimal value we expected after simulations (Fig. 3). These
results provide no support for the idea that the behavior of the
participants is best described by reliance on past information
over a small window size or a short time constant. We also
found it puzzling that many optimal values for the adaptive
models lay at the limit of our search space, which indicated that
the global minima values may be even larger.

We therefore also searched larger parameter domains (up to
400 trials). For five of the eight subjects, global minima were
found at higher values of window size and time constants, which
are much larger than the theoretically optimal value of about four
trials (Fig. 6B). The window size and time constant values vary
across participants, but the gain of the stationary model is quite
consistent (Fig. 6B). With the parameters of the global minima,

the model comparisons support the adaptive models for most
participants (Fig. 6D), but the gains for participants with large
windows and time constants approximately stabilized to the sta-
tionary gain value (Fig. 6B). In those cases, the gain no longer
increases following a step, as it does for the subjects with small
window sizes or time constants, so the potential benefit in perfor-
mance of the adaptive models (in terms of following the stimuli)
was not realized in accordance to our expectation.

We plotted cumulative absolute errors between the Kalman-
based models and participant data over trials to check whether the
advantage for the adaptive models arose from the first 50 trials of
the experiment where there is almost no noise in the stimuli. This
was not the case. The adaptive models often started out with
higher errors compared with the stationary model and converged
to a lower overall error over the course of the experiment, sug-
gesting a pervasive and widespread advantage for the adaptive
models over the course of the experiment.

DISCUSSION

With this study, we sought to investigate whether the ner-
vous system dynamically changes the extent to which it relies
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on past information on encountering abrupt changes in the
environment. Our study was partly motivated by the observa-
tion that for many everyday sensorimotor tasks, humans seem
to adapt very rapidly to an entirely new distribution of an
environmental variable. One possible manner to achieve such
rapid adaptation in nonstationary environments would be to
cease ones’ reliance upon prior knowledge in favor of a greater
reliance on recently observed information about the process. If
the variance of the process were estimated over a small
window of past information, a temporary increase of the gain
of the system would take place after such a change occurred.
Such an increase in gain would lead to faster adjustments and
thereby better performance. Under the assumption that the
process variance is recursively estimated by the observer, we
designed an experimental environment in which the best pos-
sible performance for our stimuli is furnished by a gain based
on a window of only a few past observations.

We designed an experiment to estimate the prior that the
participant was using at a high temporal resolution during the
course of the experiment. Berniker et al. (2010) were the first
to infer the human sensorimotor prior from data and since then
others have done the same (Turnham et al. 2011). We, how-
ever, did not infer the prior but obtained a direct measurement
of its mean in the absence of any sensory evidence whatsoever.
This estimate of the mean of the prior is directly comparable to
predictions (state estimates) generated by online models. We
therefore fit models to the online estimate of the before deter-
mine which of adaptive or stationary prediction mechanisms
are at play in human performance.

We knew from simulations that the change-point model was
the best candidate model to predict the stimuli and the window
model was the next-best solution. We found, however, that for
most participants the adaptive window Kalman model performed
better than all other models. The fitted values of the window to
participants’ data were much larger than the optimal value ob-
tained from simulations. This could be interpreted as participants
being more conservative in adapting the gain of their responses to
abrupt environmental changes. While a small window over past
information would yield faster adaptation after a step change in
the environment, a large window provides a more accurate esti-
mation of the statistics of the distribution during intervals with no
change. It may appear from this that participants preferred per-
forming better during a block rather than adapting rapidly to a step
change, resulting in longer window sizes and time constants than
those that are optimal overall. On the other hand, they seem to
compensate for the invariance of their Kalman gain by having an
overall higher gain than would be optimal (compare gain plots in
Figs. 3 and 6).

The accumulator model (Berniker et al. 2010) and the
change-point model (Adam and MacKay 2007) represent op-
posite poles of the above described control tendencies. The
accumulator model is well suited to accurately estimate envi-
ronmental process statistics over all past information, leading
to a steady regression in its response towards the mean of all
past observations. The change-point model is well suited to
deal with abrupt changes to new distributions. Neither the
change-point nor the accumulator model performs well in
describing human behavior in our experiment.

In conclusion, we sought to provide a mechanism that could
explain how the brain may estimate environmental parameters
from past observations. The Kalman filter has long been proposed

as a solution to online prediction challenges faced by the brain,
however, its parameters are often determined offline and are
stationary. We propose some adaptive modifications to the Kal-
man filter to address how the brain may be able to adjust its gain
online by monitoring recent changes in the environmental vari-
ance. While our efforts show that such adaptive tendencies better
explain data for most participants, the range of past trials over
which humans seem to be monitoring environmental variance is
much larger than optimally predicted by our model. We must
conclude that while adaptive behavior is present for many partic-
ipants, the adaptive Kalman models we propose do not capture the
observed sensorimotor behavior in the manner that we expected.
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