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Abstract

Recent work has shown that humans can learn or detect complex dependencies among variables. Even learning a simple
dependency involves the identification of an underlying model and the learning of its parameters. This process represents
learning a structured problem. We are interested in an empirical assessment of some of the factors that enable humans to
learn such a dependency over time. More specifically, we look at how the statistics of the presentation of samples from a
given structure influence learning. Participants engage in an experimental task where they are required to predict the
timing of a target. At the outset, they are oblivious to the existence of a relationship between the position of a stimulus and
the required temporal response to intercept it. Different groups of participants are either presented with a Random Walk
where consecutive stimuli were correlated or with stimuli that were uncorrelated over time. We find that the structural
relationship implicit in the task is only learned in the conditions where the stimuli are independently drawn. This leads us to
believe that humans require rich and independent sampling to learn hidden structures among variables.
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Introduction

Structure learning is a class of Bayesian learning algorithms that

was developed while studying unknown hierarchical dependencies

among variables [1–6]. The learning of dependencies among

variable classes is what we refer to here as structure learning. This

framework has been proposed as an explanation for how the

human brain may be able to generalize from very sparse

observations [5], [7–12]. It has also been used to explain how

the brain may be learning parameters at higher levels of the

structural hierarchy to more efficiently resolve complex sensori-

motor tasks [13–17]. And although much debate persists over

whether the brain utilizes computation over such hierarchies as its

modus operandi [18–19], there is evidence that humans learn

hierarchical representations of parameters in sensorimotor tasks

[14]. Theoretically, structure learning occurs at different levels of a

hierarchical learning problem. In this work, we present humans

with a hierarchical learning problem and focus on their learning of

the highest level of structure in it, the model or relationship level.

We are interested in how sequential presentation statistics

influence the learning of structural relationships at hierarchical

levels higher than those explored thus far in literature. We

specifically look at how the statistics of sequential presentation of

samples from a structure at such levels influences learning over

time.

We simplify the structure of the learning problem by restricting

it to two levels of analysis. One could visualize this problem as a

graph with two hierarchical levels. The top level represents the

class of ‘models’ (e.g. a linear relation) and the lower level represents

the parameters of these relationships (e.g. slope and intercept of a

linear relation). The brain does not know the real-world model

and therefore may be entertaining multiple possibilities while

trying to determine the actual nature of the relationship. For this

reason, we shall refer to these possibilities as hypotheses. To perform

the task effectively the brain would do well to identify the correct

hypothesis and estimate the correct parameters. In this work, we

empirically examine how the acquisition of the correct hypothesis

and parameters is influenced by the sequential presentation

statistics of samples from this structure.

To understand the particular problem we wish to investigate,

let us consider a scenario where in an experiment, two naı̈ve

participants are given information about a certain property of a

target and are asked to respond with their estimate of another

property (of unknown value). In the initial stages, both

participants appear to be at a loss to generate a correct

response. As the experiment progresses, participant A is

successful on frequent occasions whereas participant B appears

to still be guessing. At the beginning of the experiment, the

participants were unaware of a relationship between the two

properties of the target. Participants could only discover the

nature of such a relationship by careful observation of their

errors over many trials. The correct identification of the nature

of this relationship would enable participants to better predict

an appropriate response for any observation. Let us assume in

this case that the correct hypothesis is a linear relation between

the observed variable and the response variable. Given that
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participant A is performing well, we could conclude that A has

discovered the linear relationship inherent in the task whereas B

has not. However, this may not necessarily be true. Unbe-

knownst to the participants, the experimenter has provided the

two participants with an identical structure but two very

different sequences of presentation to expose this structure. On

every trial, participant A receives a target stimulus highly

correlated with the previous stimulus, whereas participant B

receives target stimuli that are independently sampled from a

large range. Due to this manipulation, participant A receives

stimuli that are closely related to each other and therefore the

differences in required responses on consecutive trials are small.

On the other hand it would be impossible for participant B to

predict the appropriate response to a stimulus independently

sampled from the structure without knowledge of the structure

itself. Participant A, who is provided with a Random Walk

pattern of stimuli over trials, is in a situation analogous to

driving on a dark road for many hours with headlights

illuminating a stretch ahead but having no notion of how the

road curved in the last hour. Therefore it is possible to perform

a task just by being able to predict the next immediate course

of action but that may not necessarily lead to an understanding

of global structure or form.

The question now arises, which of the two participants is

more likely to identify the linear structural hypothesis as the

correct choice. Participant B faces a sequence of uncorrelated

stimuli, which makes predicting the required response almost

impossible without an understanding of the structure. We

believe that this scenario should induce a tendency to ‘explore’

possible structural hypotheses. Participant A may, on the other

hand, ‘exploit’ an existing working strategy that allows them to

perform the task but they may be unable to integrate long term

information about the relationship and may therefore be less

likely to select the correct hypothesis (linear). Conversely, if

participants succeed in integrating long-term information,

learning of the relationship during the Random Walk phase

may be just as likely.

To examine which of these propositions is true, we performed

an experiment such as the one described earlier with three groups

of participants. All groups were presented with a linear relation-

ship with identical parameters but the manner of sampling was

different for each. One group was presented with a sequence of

stimuli following a Random Walk where each stimulus was

correlated with the previous one. The other two groups were

presented with stimuli that were independently drawn from either

a Uniform or Gaussian distribution. The higher probability of

presentation of central stimuli for the Gaussian sequence results in

better average predictability of a required response whereas it

would be nearly impossible to predict future samples from within

the range of the Uniform sequence. Further, each of the Gaussian

stimuli sets was statistically matched (first and second order

statistics) with its counterpart in the Random Walk group. It

therefore serves as an intermediate condition between the Uniform

and Random Walk groups.

In the Random Walk condition, merely correcting for the error

incurred on the previous trial of correlated stimuli will produce a

correlation in responses. This may not necessarily be indicative of

actual learning of the structure. To ascertain whether learning

truly occurs during the Random Walk presentation, we add a

hundred uncorrelated trials at the end of the sequence. If

participants learned the linear relationship, they should be able

to generalize this learning to any distribution of samples. If they

fail to do so, this would imply a failure to have learned the correct

relationship inherent in the task.

Methods

Participants and Equipment
Twenty-four naı̈ve participants (ten female), with normal or

corrected-to-normal vision, provided written informed consent to

perform the study. Participants were divided into three groups of

eight participants. Additionally, seven naı̈ve participants (three

female) gave informed consent to perform a control experiment for

one of the three conditions. The Ethical Committee of the Faculty

of Human Movement Sciences, VU University approved the

program to which this study belongs.

Participants were seated in the dark on a setup with their hands

resting on a horizontal tablet surface (Wacom Digitizer UD-1825-

A, 45.7663.5 cm) upon which participants viewed computer

generated images (refresh rate 85Hz, resolution: 10246768 pixels)

projected through a semi-silvered mirror (as described in [20]).

Participants had no vision of their hand but obtained continuous

veridical feedback about the position of their hand through the lit

tip of the stylus they held.

Stimulus and Task
Participants moved to a start location where after the lapse of a

random interval (Uniformly sampled from a range of 500–

2000 ms) the initiation of the trial was marked by the disappear-

ance of the start location and the simultaneous flashing of a cue (on

for 40 ms) at the future target location. The start location and the

cue were always aligned for a given trial in their lateral coordinate

but the cue appeared 100 mm further from the starting position in

the sagittal direction (Figure 1 a). Participants were instructed

beforehand that the target (265 mm) would appear at the cued

location and they had to estimate when it would appear by

intercepting it within 150 ms of its appearance after which time

the target was extinguished. They were asked to move forward

without reversing direction on each trial failing which they would

forfeit the trial. Participants were naı̈ve to the fact that the lateral

spatial location of the target determined the time of its onset after

the cue. The mapping between the target location (x) in

millimeters and the onset time (t) in milliseconds was always as

per the following equation: t = 10x +1000. The lateral spatial

location of the target ranged from 250 to 50 mm approximately

(with respect to the center of the screen) and correspondingly the

time of its appearance ranged from 500 ms to 1500 ms after the

cue (Figure 1).

If the participant succeeded in intercepting the target, they saw

the target flying upwards from the impact, received audio

feedback, and received points. Participants had continuous

veridical feedback from the lit tip of the stylus and could therefore

see that they were too late or too early if they missed the target.

Participants competed with each other for cumulative scores,

which were made available to all participants.

Design
Each condition had 500 trials in total. For the Random Walk

group, the stimulus location over trials took the form of a random

walk selected such that without any temporal correlation, the

sequence would closely resemble a Gaussian. They were also

selected to approximately range within bounds of 250 to 50 mm,

with a step noise drawn from a Gaussian distribution ( s= 7 mm)

(Figure 2c). Random walks were generated in mirrored pairs of

400 trials so that any systematic effects in the data resulting from a

particular distribution would be cancelled out by its mirror. The

last 100 trials in the Random Walk condition were drawn

independently across trials from a Uniform distribution (Figure 2f).

The Gaussian Uncorrelated stimuli sets were obtained by scrambling

Sampling in Structure Learning
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the Random Walk stimuli sets (Figure 2b). These were also

produced in symmetric pairs since the Random Walks from which

they were obtained were generated in reflected pairs, so that the

mean position across pairs was zero.

Figure 1. Trial timeline and design. a) Sequence of events in a single successful trial. Trials were initiated by moving the stylus to a starting
location (red), which was followed by the flashing of a cue (green) and eventually the target. Hypothetical stylus trajectories are marked by dashed
gray lines. Participants were required to anticipate the timing of the target. b) The spatial ranges of the target and starting position (shaded region) in
the lateral dimension with an example pair (solid colors). The dimensions are marked by the dashed arrows (black).
doi:10.1371/journal.pone.0062276.g001

Figure 2. Distributions of the stimuli. a–c) Histograms (bars) of sample stimulus sets from each condition with average probability density fits
(solid lines) to all sets. Note that the aggregate distribution of the Random Walk matches that of the Gaussian Uncorrelated condition. d–f) The
corresponding sequences of presentation of the stimuli over the course of the experiment.
doi:10.1371/journal.pone.0062276.g002
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The lateral locations of the Uniform Uncorrelated targets were

drawn uniformly from the range : 250 to 50 mm (Figure 2d). We

also scrambled 100 trials of the generated Random Walk into the

Uniform distribution. Since large sequences of spatially constrained

Random Walks are hard to produce, we selected some sequences

where occasional targets drifted beyond the 650 mm range.

Data Analysis
We defined the response time as the time at which the

participant’s stylus crossed the midline of the target. The spatial

error was measured with respect to deviation from the center of

the target. The 100 mm lateral stimulus space was divided into

5 bins of 20 mm each. For each participant, response times that

exceeded thrice the standard deviation of response times within

these bins were rejected (,1.5% of trials on average). Hardware

delays were compensated online to calculate feedback (described

in [20]). A hit was registered if the participant’s stylus was within

the target region within 150 ms of its presentation (the display-

time for the target).

Responses, over the course of the experiment, were grouped in

10 bins of 50 trials each. We performed robust regressions with a

logistic weighting function (tuning factor = 1.2) within these bins.

We calculated the regression slopes as proportions of the actual

slope (10 ms/mm).

The last two bins of the Random Walk condition were actually

uniformly distributed trials. For this reason, we performed a mixed

design Analysis of Variance on the proportion slope regressed

compared to the actual, with the condition as a between subjects

factor and the first 8 bins of each condition as the within subjects

factor. We also performed a similar ANOVA on the last two bins

of each condition to analyze the learning at the end of each

condition.

Results

Three groups of naı̈ve participants performed an interception

task in which a linear relationship was implicit. The mean

movement initiation time was found to be 0.454 s (SD: 0.170 s).

We found no significant differences in initiation times for the three

groups (F(2,21) = 0.38, p = 0.69 ). Figure 3 shows pooled responses

for all participants within each group, running averages (window

of 10 mm), and linear regression fits. For the Uniform group, the

proportion of actual slope obtained by regressing the data is 18.5%

of the actual slope (R2: 0.0213, F = 82, p,0.001), for the Gaussian it

is 16.3% (R2: 0.014 F = 53.2 p,0.001 ) and it is 44.7% for the

Random Walk (R2: 0.16 F = 724, p,0.001). Thus based on the

regression obtained from the pooled data, the Random Walk

participants have reproduced 45% of the slope provided in the

stimuli whereas, the other two groups reproduce less than 20% of

the actual slope. These values can be better evaluated in the light

of the fact that even the most extensively trained author who had

explicit knowledge of the parameters of the linear relationship was

unable to obtain a slope percentage higher than 50% from their

responses.

We divide the responses from each participant in bins of 50

trials throughout the experiment to obtain robust regression

coefficients within these bins (Figure 4). We explained in earlier

sections that any participant performing the task in the Random

Walk group would incur a high correlation merely by responding

with an adjustment to the error they incurred on the previous trial.

Thus, to distinguish whether the overall high regression slope we

obtained in Figure 3c is merely a consequence of following the

Random Walk stimuli or arises from acquiring knowledge of the

structure, we examine participants’ behavior when presented with

the uniformly distributed trials after 400 Random Walk trials

(Figure 4c). If the high slope obtained during the Random Walk bins

is a consequence of learning the structure, the high correlation

found earlier should continue despite the switch to the Uniform

distribution trials. In Figure 4 c, we find that when the switch

occurs at the 9th bin (trial number 400), the regressed slope is

statistically indistinguishable from zero (t7 = 0.59, p = 0.56). There

is also a significant difference (t7 = 2.08, p = 0.036) between the

regression slopes in the 8th bin (last bin of the Random Walk in

Figure 4c) and the ninth bin (first bin of the Uniform in Figure 4c).

These findings indicate that participants in this group did not learn

the structure during the Random Walk presentation.

We also performed an analysis of variance (ANOVA) on the

proportion of slopes obtained by analyzing the three groups of

conditions between participants and the first eight bins within

groups (Figure 4 a b c). We found a main effect of condition

(F(2,21) = 5.71, p = 0.01 ). The main effect of bins and the

interactions were not significant in this analysis. Pair-wise post-

hoc least-squares difference (LSD) analyses on the three conditions

revealed that the robust regression coefficients from the Uniform

and Random Walk conditions differ from each other (p = 0.017), as

do the Gaussian and Random Walk conditions (p = 0.005). The

coefficients for the Uniform and Gaussian conditions do not differ

(p = 0.56). Thus, during the course of the Random Walk,

participants exhibited higher slopes than in the other two

conditions. We also performed a mixed design ANOVA upon

the regression coefficients in the last two bins of 50 trials each for

the three groups but found no significant effects.

Figure 4 (lower panel) shows how the average percentage of hits

across subjects changes over the course of the experiment. These

rates are relatively low. We see from this that the task was

relatively difficult for participants throughout. The percentage of

hits in the Uniform and Gaussian conditions are lower than in the

Random Walk condition, except after the switch to uniformly

distributed trials occurs towards the end (Figure 4f). This provides

further confirmation of the fact that these participants did not

learn the correlation during the Random Walk (Figure 4c).

We see another interesting paradox while noting what happens

after the switch in Figure 4c and f. It appears that the learned slope

percent drops to zero once the switch to the Uniform distribution is

made but the hit rate remains almost at par with that during the

Random Walk. To understand this, let us consider an example

where the participant has hit several stimuli appearing around the

0 mm mark resulting in a series of responses timed around

1000 ms. Suddenly the stimuli start appearing at locations that

seem far apart but the participant, who continues to respond at

1000 ms, may still succeed in hitting some targets that appear close

to the center. Therefore, had the participant chosen a fixed time of

response from within the presented range of the stimuli, they

would be likely to obtain a hit percentage of 15% within a bin of

uniformly distributed trials, even without any knowledge of the

linear relationship. In such an event, even with 15% hits, their

regressed slopes would remain zero. This demonstrates how the

regressed slope proportion is a more sensitive measure of the

learning of the linear relationship in comparison with a measure of

performance given by the hit rate.

One could also argue that participants in the Random Walk

group did not learn the relationship since there was no apparent

benefit in doing so since the strategy of responding with the

help of the previous observation had been effective in the first

400 trials. We ran a control experiment to test whether

introducing the possibility of there being a benefit to exploring

multiple strategies would alter the result we found for the

Random Walk group.

Sampling in Structure Learning
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We asked seven naı̈ve participants to perform the Random Walk

condition precisely as described for the main experiment with one

additional instruction. We gave participants prior information

about the statistics of the sequence (Random Walk to Uniform) but

gave them no indication of the nature of the linear relationship.

Participants were told with emphasis that during the first 400 trials

(trial numbers were displayed) stimuli would appear close to where

they appeared on the previous trial but in the last 100 trials, the

stimuli would appear at random locations on every trial. We found

that the occurrence of the switch brought the percentage of

learned slope to zero (Figure 5a), just as we had found in the main

experiment (Figure 4c). The slope in bin 8 is significantly different

from that in bin 9 (t6 = 2.65, p = 0.0378). This demonstrates that

even with foreknowledge of the switch from the Random Walk to the

Uniform distribution, participants failed to learn the linear

relationship inherent in the stimuli.

Figure 3. Temporal responses. Responses of all participants in each group are plotted against the stimulus location (mm) for the three groups: a)
Uniform Uncorrelated b) Gaussian Uncorrelated and c) Random Walk. A running average of these pools is also displayed (thick lines) along with the
linear regression (thin lines) performed on pooled subject data within each group.
doi:10.1371/journal.pone.0062276.g003

Figure 4. Learning and performance. The coefficient of robust regression as a proportion of actual slope in trial bins of 50 trials over the course
of the experiment for the three conditions a) Uniform Distribution (blue), b) Gaussian (Purple) and c) Random Walk (orange). The last 2 bins in the
Random Walk condition are uniformly distributed (blue). d, e, f: Percentage of hits within trial bins of 50 trials. Error bars indicate standard errors.
doi:10.1371/journal.pone.0062276.g004
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Discussion

We presented three groups of participants with the same linear

relationship and parameters. Unbeknownst to the participants, this

linear relationship existed between the location of the target and

the required response time needed to hit it. We wanted to

determine how participants differed in learning this relationship

when the presentation sequence of stimuli was correlated over

trials as opposed to when it was not. We expected that when the

presentation sequence was uncorrelated over trials, participants

would explore implicit relationships between variables in the task

and therefore, would be more likely to learn the structure and

select the correct hypothesis. On the other hand, when the stimuli

were correlated, participants may have exploited an apparently

adequate strategy (use of previous observation) and therefore may

have never sought out a hidden dependency among variables in

the task.

Our results support this hypothesis. We found evidence of

detection of the correct linear hypothesis in the two conditions

where no correlation existed over trials (Figure 4a & 4b) and could

find no evidence of learning in the condition where samples were

correlated over trials (Random Walk: Figure 4c). At a first glance

(Figure 3c), it would seem that participants of the Random Walk

group learned the correct hypothesis, however, the high slope

obtained appears to be a mere consequence of passive tracking of

correlated stimuli. Structure learning is a global phenomenon such

that the observer has fully identified the hierarchies and

dependencies involved. It therefore follows that if participants in

the Random Walk condition had truly learned the structure, they

should have easily been able to transfer such generic knowledge to

any other distribution. This was, however, not the case. When

participants in the Random Walk group switched to the uniformly

distributed stimuli, their regressed linear slope dropped to zero

suggesting the lack of a global realization of the structure. One

could also argue that these participants may have failed to learn

the structure because they used a strategy suited to perform the

task optimally during the Random Walk sequence and continued to

use it when they switched to uniformly distributed stimuli. And

since the existing strategy was clearly yielding good predictions of

future stimuli, there was no real requirement for participants to

explore additional possibilities. This begs the question however,

that if they were forewarned about it being useful to formulate

multiple strategies, would they have performed any better. We

found that they did not perform any differently in a control

experiment using the Random Walk condition where participants

were clearly instructed about the nature and timing of the switch

(Figure 5). Participants did not alter their strategy to one that was

better suited to stimuli experienced after the switch. This brings us

back to what we argued earlier in the introduction that if a certain

strategy yields satisfactory results, it may reduce the tendency of

the observer to explore for more complex and globally conducive

strategies.

In summary, the exploration of hierarchical dependencies

implicit in an environment is facilitated by a rich and independent

sampling of sequences. The Random Walk condition in the study

reveals a paradox about participants being able to adequately

perform a task without developing a global understanding of

implicit relationships, like in the driving example in the

introduction. Participants in the conditions where no correlation

existed across trials, despite poorer performance, discover the

structure inherent in the task. We may therefore conclude that

there are certain tacit benefits to making errors.
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