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Abstract Within the field of motor control, there is no con-
sensus on which kinematic and kinetic aspects of movements
are planned or controlled. Perturbing goal-directed move-
ments is a frequently used tool to answer this question. To be
able to draw conclusions about motor control from kinematic
responses to perturbations, a model of the periphery (i.e., the
skeleton, muscle–tendon complexes, and spinal reflex cir-
cuitry) is required. The purpose of the present study was to
determine to what extent such conclusions depend on the
level of simplification with which the dynamical properties
of the periphery are modeled. For this purpose, we simulated
fast goal-directed single-joint movement with four existing
types of models. We tested how three types of perturbations
affected movement trajectory if motor commands remained
unchanged. We found that the four types of models of the
periphery showed different robustness to the perturbations,
leading to different predictions on how accurate motor com-
mands need to be, i.e., how accurate the knowledge of exter-
nal conditions needs to be. This means that when interpreting
kinematic responses obtained in perturbation experiments the
level of error correction attributed to adaptation of motor
commands depends on the type of model used to describe
the periphery.
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1 Introduction

In the field of motor control, it is controversial which kine-
matic and kinetic aspects of the movement are planned and/or
controlled. Or what signals are sent from the brain to the
periphery defined as the skeleton, muscle–tendon complexes,
and spinal reflex circuitry. To investigate these signals or
motor commands, a frequently used method is perturbing
goal-directed arm movements with a mechanical load.
(Bhushan and Shadmehr 1999; Debicki and Gribble 2004;
Gottlieb 2000; Gribble and Ostry 2000; Hinder and Milner
2003; Izawa et al. 2008; Kistemaker et al. 2010; Smeets et al.
1990, etc.). These researchers used the changes in movement
kinematics in response to a mechanical perturbation to con-
clude what aspects of the movement are controlled and what
information is used to customize motor commands to the
external conditions. Yet, to make these deductions on the basis
of the kinematic responses observed one needs a model of the
periphery.

The periphery is characterized by high-order dynamics
with nonlinearities in the tendon compliance and in the
intrinsic muscle properties (force–length relationship and
force–velocity relationship). It is generally a good strat-
egy to keep models as simple as possible. Should one take
into account all complexity in a model for the periphery
if one wants to study which variables are controlled in
goal-directed arm movements? Or is a simple model ade-
quate?

There are clear examples why an elaborate description of
the intrinsic muscle properties in models of the periphery
might be essential from the control of whole-body move-
ments such as jumping. Performing a squat jump requires a
pattern of joint torques that depends critically on the initial
joint angles. The fact that we can perform squat jumps from
various starting postures might suggest that we use precise
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information and internal models (Kawato 1999; Wolpert and
Ghahramani 2000) to determine the required joint torques.
However, it has been shown that the force–velocity relation-
ship of the muscles compensates the effect of perturbations of
starting position before a jump to a large extent (van Soest and
Bobbert 1993). The robustness of their model of the periph-
ery to this type of perturbation could lead one to conclude
that muscle commands do not need to be accurately custom-
ized to starting position. A similar result has been obtained
for dealing with variations in inertia in a whole-body lifting
task (van der Burg et al. 2005).

Not all researchers use a model that includes an elabo-
rate description of the intrinsic muscle properties (Sainburg
et al. 1999; Scheidt et al. 2005; Shadmehr and Mussaivaldi
1994). This raises the question to what extent conclusions
on motor control depend on the level of simplification with
which the dynamics of the periphery are modeled. We will
test four types of models of the periphery as used in pre-
viously published research on motor control to describe the
elbow joint. We will investigate the responses to changes in
external conditions while keeping the motor commands the
same (robustness).

The simplest way to model the periphery is by neglect-
ing all neural and muscle–tendon properties, resulting in a
torque-driven model: motor commands prescribe directly the
joint torques over time (e.g., Kawato 1990; Sainburg et al.
1999). The simplest way to take into account the visco-
elastic properties of the muscles and tendons is to describe
the periphery as a second-order time-invariant linear mass–
spring–damper system (e.g., Scheidt et al. 2005; Shadmehr
and Mussaivaldi 1994; Thoroughman and Shadmehr 1999).
This second-order model is of course still a simplification
of the higher order dynamics of the periphery, which might
affect conclusions based on such a model (Kistemaker and
Rozendaal (2011). Still other researchers model the nonlinear
excitation and contraction dynamics and the tendon compli-
ance (e.g., Nijhof and Kouwenhoven 2000; van Soest and
Bobbert 1993) and the most elaborate models also incor-
porate the muscle spindle feedback (e.g., Kistemaker et al.
2006; Song et al. 2008).

In this study, we do not aim to evaluate which of these mod-
els best describes the periphery. This will be by definition the
least simplified model if we assume that model parameters
are chosen adequately. Also, we do not aim to evaluate which
model leads to highest robustness against mechanical pertur-
bation. Rather, we wish to see to what extent simplifications
in the model of the periphery affect the robustness of the
model’s behavior, and thus to what extent robust perturba-
tion responses may be misinterpreted to be caused by central
motor control in case an inadequate model of the periphery is
used. If the model’s robustness to a perturbation is not altered
by a simplification, then we consider this simplification to be
justified. Our approach is thus opposite to the usual approach

to make models more complex if the simpler model does not
suffice to explain experimentally observed behavior.

2 Methods

2.1 Models

We used four types of models of the periphery (Fig. 1), which
differed in the level of simplification with which the dynam-
ics of the periphery are incorporated. In the most general
form, we can describe the periphery in case of the elbow
joint as:

I · ϕ̈ = Tact + Text (1)

where Tact is the net joint torque resulting from the actuator
system (muscle–tendon complexes) based on the input signal
(motor commands), I is the inertia of the lower arm relative
to the elbow flexion/extension axis, and Text is the external
torques working on the lower arm.

As the most simplified model of the periphery, we used a
skeletal model or a torque-driven model (T-model: Figs. 1a
and 2a, green lines). This model did not describe the vi-
sco-elastic properties of the periphery since it ignores mus-
cles, tendons, and muscle spindle feedback. The input for
this model was joint torque over time. This means that the
commanded joint torque (Tcom) equal the Tact in Eq. 1. We
described the lower arm and hand as one segment with a seg-
ment length of 0.26 m, a segment mass of 1.65 kg, a distance
of the centre of mass from the elbow joint of 0.18 m, and an
inertia relative to the center of mass of 0.025 kg m2.

In the second most simplified model, the periphery was
described as a second-order linear mass–spring–damper sys-
tem (KBI-model, Figs. 1b, 2b, blue lines), as for instance
used by Scheidt et al. (2005) and Shadmehr and Mussaivaldi
(1994). The KBI-model strongly simplified the nonlinear vi-
sco-elastic muscle properties, the nonlinear elastic tendon
properties, and the muscle spindle feedback by describing
them as a linear time-invariant system with a constant stiff-
ness coefficient (K ) and a constant damping coefficient (B).
For the one-dimensional case, this resulted in

Tact = Tcom − K · (ϕ − θ) − B · (ϕ̇ − θ̇ ) (2)

where Tcom is the commanded joint torque over time as
given by the input signal, θ is the planned joint angle over
time, θ is the planned angular velocity over time, ϕ is the
actual joint angle, ϕ̇ is the actual angular velocity, and ϕ̈ is
the actual angular acceleration. Strictly speaking his model
can be regarded as a forced mass–spring–damper system
with the active input being planned kinematics (θ, θ̇ ) over
time as well as commanded joint torque (Tcom) over time.
Alternative models can be found that specify active input as
either planned kinematics (De Lussanet et al. 2002) or Tcom

123



Biol Cybern (2012) 106:441–451 443

d c b a 

ϕ

Fig. 1 An overview of the four types of models that were used to
describe the periphery. The models differ in the level of simplifi-
cation with which the visco-elastic properties of the periphery are
described. From no description to elaborate description: a a torque-
driven model (T-model), b a second-order linear mass–spring–damper

model (KBI-model), c a stimulation-controlled musculoskeletal model
(STIM-model), and d an equilibrium-point (EP)-controlled musculo-
skeletal model (EP-model). Elbow angle (ϕ) is defined such that 0◦
indicates full extension

(Uno et al. 1989). As these inputs are interchangable all these
models will show the same dynamic behavior to perturba-
tions for a certain set of values for K and B. The advan-
tage of defining active input with both the commanded joint
torque and the planned kinematics is that active input can
be derived by using the kinematics and the corresponding
joint torques of the planned movement trajectory. Based on
Scheidt and Ghez (2007) and Shadmehr and Mussaivaldi
(1994), we choose K = 16 Nm/rad and B = 2.4 Nms/rad
(as measured by Mussa-Ivaldi et al. 1985) and for simplicity
we did not modify these coefficients for the different sim-
ulated perturbations. A similar strategy was chosen for the
model parameters of the other models in this study.

As our third model, we used a musculoskeletal model
(STIM-model, Fig. 1c) as described by Kistemaker et al.
(2006). The model incorporated the nonlinear activation
dynamics, nonlinear intrinsic visco-elastic muscle proper-
ties (force–length relationship and force–velocity relation-
ship), and the nonlinear tendon compliance (Fig. 2b, red
lines). The muscle parameters were slightly modified (see
Table 1) compared to Kistemaker et al. (2006) so that
the maximal isometric torque–angle relationship predicted
by the model fitted the curves measured by Pinter et al.
(2010). The input for this model was muscle stimulation over
time.

The least simplified model of the periphery used in
this simulation study was an EP-controlled musculoskele-
tal model (EP-model: Fig. 1d) developed by Kistemaker et al.
(2006). His hybrid model combines both the α-version (Bizzi

and Abend 1983; Hogan 1984) and the λ-version (Feldman
1986) of EP theory. Furthermore, the model incorporated the
nonlinear activation dynamics, the nonlinear intrinsic visco-
elastic muscle properties, the nonlinear tendon compliance,
and the time-delayed muscle spindle feedback that contrib-
uted to the visco-elastic behavior of periphery. As it has been
reported that spindle feedback is inhibited at the start and
end of a movement and maximal at the time to peak veloc-
ity (Shapiro et al. 2002, 2009), the contribution of spindle
feedback to the muscle stimulation was gated by means of a
Gaussian function (Kistemaker et al. 2006, Eq. B2). The input
signal prescribes an EP by a set of open-loop muscle stim-
ulations that lead to equilibrium of forces at a planned joint
angle and the corresponding set of muscle lengths when equi-
librium in planned joint angle is reached. For each planned
joint angle, multiple EP’s can be calculated all leading to a
different amount of stiffness in the joint angle. In line with
Kistemaker et al. (2006), all EP’s were calculated under the
constraint that open-loop joint stiffness in the equilibrium
was maximal. The planned movement was given as an input
signal consisting of three EP’s: the starting angle, an angle
midway, and the planned angle at the endpoint. This dou-
ble-step EP-trajectory was similar to the trajectory used by
Kistemaker et al. (2006) and chosen this way since it has been
indicated that EP does not shift instantaneously from starting
to endpoint (Bizzi et al. 1982). For simplicity, feedback gains
were kept at constant values of −0.4 m−1 for muscle fiber
length and −0.15 s/m for muscle fiber contraction velocity
in all simulations described in this study.
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Fig. 2 Schematic overview of the models used. a The T-model (green). b The KBI-model (blue) describing the complex dynamics of the periphery
with one linear stiffness coefficient and one linear damping coefficient. c The STIM-model (red). Note that this same model is incorporated in
d the EP-model (grey)

Table 1 Muscle parameters used in the EP-model and the STIM-model:
maximum isometric force (Fmax), optimum length of contractile ele-
ment (lce_opt), slack length of series elastic element (lse_0), slack length

of parallel elastic element (lPE_0), coefficient of tendon displacement
method as described by Grieve et al. (1978) (a0, a1e, and a2e)

Muscle Fmax (N) lce_opt (m) lse_0 (m) lPE_0 (m) a0 (m) a1e (m/rad) a2e (m/rad2)

MEF 2160 0.078 0.185 0.114 0.305 −0.019 3.9610−2

MEE 2782 0.063 0.216 0.092 0.255 0.027 2.1610−2

BEF 629 0.110 0.229 0.161 0.365 −0.026 5.7310−2

BEE 1083 0.107 0.236 0.156 0.339 0.028 2.3810−2

Muscle were lumped to four groups (Fig. 2): monoarticular elbow flexors (MEF), monoarticular elbow extensors (MEE), biarticular elbow flexors
(BEF), and biarticular elbow extensors (BEE)
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2.2 Perturbations

As shown by our definition of the periphery (Eq. 1), we
can apply a mechanical perturbation by changing iner-
tia or changing the external torque. We simulated three
perturbation types: (1) a position-dependent external torque
perturbation (as if moving in the gravitational field), (2) a
velocity-dependent external torque perturbation (as if mov-
ing through water), and (3) an inertial perturbation (as if
transporting an object from one point to the other in the hor-
izontal plane). For all models, an input signal was obtained
that would lead to a planned joint angle (θ) or a planned joint
movement (θ (t)) when simulating the unperturbed situation
(reference simulation). This input signal was used without
modification when the perturbation was applied.

For the position-dependent external torque perturbation,
we introduced gravity, as shown in Fig. 3a. We calculated
steady-state joint angle given this input signal and with an
additional gravitational torque (Text) applied at the lower arm:

Text = m · g · d · cos(ϕ + 45◦) (3)

where m is the segment mass, g is gravitational accelera-
tion, and d is the distance from flexion/extension axis of the
elbow to the lower arm center of mass. This procedure was
performed for a range of joint angles (45◦ < θ < 135◦) cho-
sen such that gravitational torque in the perturbed condition
ranged from zero (θ = 45◦) to maximal (θ = 135◦). We con-
sider it suitable to use the unperturbed situation as a reference
because then deviations are indicative of the contributions of
the dynamics of the periphery in the responses to perturba-
tions as used in experiments. We will refer to the difference
between θ and the steady-state joint angle as the static error.
For a positional task such as a goal-directed movement, this
static error is in our view a crucial variable, as it indicates
the perturbation-induced error in reaching the planned end-
point in the absence of additional control from the brain.
To explain the differences in static error between the four
types of models, we calculated the low frequency stiffness
of the STIM-model and the EP-model for 45◦ ≤ θ ≤ 135◦
using the methods as described by van Soest et al. (2003).
In brief, this entailed linearizing the nonlinear time-invariant
state space STIM/EP-models for a certain θ (linearization
point). For this linearized state space model, a low frequency
stiffness was estimated by imposing a constant small angu-
lar deviation from the linearization point and calculating the
steady-state joint torque.

For the velocity-dependent external torque perturbations
and the inertial perturbations, we first simulated a 90◦ elbow
flexion and extension with the EP-model (unperturbed ref-
erence). For the STIM-model, T-model, and KBI-model the
input signal was determined that would result in ϕ-trajecto-
ries identical to those in the unperturbed reference. For all
four models, we simulated an elbow flexion and an elbow

extension given this input signal in the presence of a veloc-
ity-dependent external torque (Text):

Text = −b · ϕ̇ (4)

We varied b in such a way that damping changed from
−108 to +108 % compared to the damping coefficient of the
KBI-model (i.e., −2.6 to 2.6 Nms/rad). A negative damp-
ing coefficient corresponds to a velocity-dependent supply
of movement energy. We choose to simulate this condition
as it was used to perturb arm movements in several previ-
ous studies. (Hinder and Milner 2003; Kurtzer et al. 2005;
Thoroughman and Shadmehr 1999)

We also simulated an inertial perturbation by using the
input signal of the reference simulation and a changed
moment of inertia (ranging from −50 to 125 % of the inertia
in the reference simulation).

For most models, the static endpoint error is insensitive
to velocity-dependent torque perturbations and inertial per-
turbations. To capture to what extent a perturbed movement
differed from the unperturbed movement over a reasonable
timeframe, we developed a measure of the model’s robust-
ness based on the simulated movements as described in
phase plots. In the phase plots, we normalized position to the
movement amplitude of the reference movement and angular
velocity to the peak angular velocity of the reference simu-
lation. We calculated for each time-sample in the simulation
the distance in normalized state space between the reference
simulation and the perturbed simulation and took the average
of this distance over the first 600 ms of the simulation (Rb).

3 Results

3.1 Position-dependent external torque perturbation

Figure 3b shows the static errors induced by the gravitational
torque: the difference between the actual steady-state joint
angle and the angle θ . The gravitational torque increased
monotonically from zero for θ = 45◦ (i.e., lower arm ver-
tical) to a maximal value for θ = 135◦ according to Eq. 2.
Differences in the static error among the four types of models
can be explained by this relationship between gravitational
torque and joint angle in combination with the differences
in low frequency stiffness’ of the models (Fig. 3c). For the
T-model (low frequency stiffness of zero), no steady-state
angle was reached if gravitational torques were exerted on
the lower arm (θ > 45◦). For the KBI-model (a linear stiff-
ness coefficient independent of θ), the static error is approx-
imately proportional to the size of the gravitational torques.
Due to the nonlinear position dependency of the gravitational
torque, the static error is not by definition proportional to the
size of the gravitational torque. For the STIM-model (low
frequency stiffness varies with θ) the static error increased
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Fig. 3 a A representation of the gravitational perturbation. An elbow
angle (θ) of 45◦ leads to zero gravitational torque acting on the lower
arm. b Static error induced by the gravitational torques on the lower
arm for the four types of models. For the T-model (green dotted curve)

every θ > 45◦ will lead to a static error >45◦ because steady-state joint
angle will be reached at the upper boundary of the range of motion of
the elbow joint (set at 180◦). c The low frequency stiffness for the four
types of models

Table 2 The robustness (Rb) to
perturbation for the four types of
models

The T-model shows the least
robustness in all perturbation.
Robustness to perturbations
show a similar pattern for elbow
flexion and elbow extension

Flexion Extension

EP STIM KBI Torque EP STIM KBI Torque

b = −0.6 0.12 0.46 0.139 5.73 0.113 0.314 0.123 5.387

b = 0.6 0.07 0.1 0.102 0.628 0.082 0.118 0.093 0.592

�I = −25 % 0.0767 0.0603 0.049 0.3125 0.1436 0.0488 0.0429 0.2957

�I = 25 % 0.096 0.0635 0.0432 0.1878 0.1608 0.0462 0.0374 0.1777

with gravitational torque but saturated at θ > 80◦ because
low frequency stiffness rapidly increased for θ > 80◦. This
rapid increase in low frequency stiffness is comparable with
the results of Kistemaker et al. (2007) and can be attributed
to the rapid decrease in torque as found in the maximal iso-
metric torque–angle relationship for the elbow flexors in this
range of elbow angles (Pinter et al. 2010). For the EP-model,
the muscle spindle feedback added to the low frequency stiff-
ness, reducing the static error substantially.

In summary, researchers who use the KBI-model or the
T-model to simulate movements in the gravitational field,
would come to the prediction that motor commands need to
be accurately customized to the gravitational torques work-
ing on the lower arm in order to make movements that end on
target. Researchers using the EP-model would come to the
opposite conclusion since this model predicts that neglect-
ing the gravitational torques would only lead to a small (<2◦)
static error.

3.2 Velocity-dependent external torque perturbation

The trajectories for velocity-dependent torque perturbation
during elbow flexion simulations are shown in Fig. 4a–d for a

range of perturbation sizes (−2.6 Nm/rad < b < 2.6 Nms/
rad) and for each of the four models. Results for two pertur-
bation sizes (b = 0.6 and b = −0.6) are shown in Fig. 4e–f.
These perturbation sizes are used to illustrate the difference
in robustness to the velocity-dependent external torque for
the four types of models (Fig. 5; Table 2).

Again the T-model showed the least robustness to this per-
turbation type. No matter how small the perturbation, b < 0
always led to an oscillation with increasing amplitude and
b > 0 always led to the movement ending in its starting
position (see Appendix A for mathematical explanation of
the latter phenomenon).

For the three models that incorporated visco-elastic mus-
cle properties, the effect of the velocity-based perturbation
was less dramatic than for the T-model. As expected, all mod-
els are less robust when velocity-dependent torque is desta-
bilizing (b < 0) than when it is stabilizing (Table 2). The
STIM-model showed least robustness to the destabilizing
perturbation and for b < −0.6 Nms/rad the intrinsic viscous
muscle properties could no longer dissipate the kinetic energy
injected by the velocity-dependent external torque. The result
is an oscillation with increasing amplitude. The addition
of muscle spindle feedback to the model of the periphe-
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ral motor system (yielding the EP-model) increased robust-
ness to the velocity-dependent torque perturbation in both
the stabilizing and destabilizing conditions (Fig. 5; Table 2).

For b < −1.1 Nms/rad, the EP-model can no longer dissi-
pate the kinetic energy injected by the destabilizing veloc-
ity-dependent torque. The KBI-model is also robust to the
velocity-dependent torque. Only when b < −2.4 Nms/rad,
the oscillations increase in amplitude. At this point, the damp-
ing coefficient of the perturbation annihilated the damping
coefficient of the KBI-model.

Altogether, this means that when using destabilizing
velocity-dependent external torque perturbations to investi-
gate motor control, researchers using a T-model would pre-
dict that motor commands need to be perfectly customized
to the external damping conditions in order to be able to
control movements. As both sensory information as motor
commands have some degree of noise, this prediction would
necessitate that motor commands are adapted during the
movement based on feedback, even if no perturbation is
present. When using one of the three other models, the
level of simplification has an important effect on interpreting
data from experiments with a negative-simulated viscosity:
the STIM-model predicts different responses than the other
two.

3.3 Inertial perturbation

The trajectories for inertial perturbation during elbow flex-
ion simulations are shown in Fig. 6a–d for a range of per-
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Fig. 7 Phase plots are used to indicate the model’s robustness to the
inertial perturbation for two perturbation strenghts and two movement
directions. Thin black curves represent the unperturbed condition for
all models (reference simulation). The EP-model, the STIM-model and
the KBI-model show a high robustness to the inertial perturbation

turbation sizes (−50 % < I < 125 %) for each of the four
models. Results for two perturbation sizes (�I = −25 %
and �I = 25 %) are shown in Fig. 6e–f. These perturba-
tion sizes are used to illustrate the difference in robustness
(Fig. 7; Table 2) to the inertial perturbation for the four types
of models.

The movements produced by the T-model were also most
affected by this type of perturbation. The three models that
include damping and stiffness properties all seem to show a
certain level of robustness to inertial perturbations (Fig. 6).
When looking at the kinematic responses of these three mod-
els in more detail (Fig. 7; Table 2), the model describing these
properties with the least simplifications (EP-model) was least
robust.

For the interpretation of inertial perturbation experiments
in terms of knowledge needed to reach the target, the level
of simplification in the model is not very relevant, provided
that the stiffness and damping properties are incorporated in
some way. If experiments would show that an inertial per-
turbation does not affect reaching the goal, any model that
incorporates the stiffness and damping properties would lead
to the conclusion that this performance is possible without
knowledge of the perturbation.
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4 Discussion and conclusions

We found that the amount of information about the exter-
nal conditions that is required to control goal-directed arm
movements varied with the type of model used to represent
the periphery. Models that neglect the visco-elastic proper-
ties of the periphery predict that movements are not well
controlled unless motor commands are perfectly customized
to load conditions, whereas models that incorporate these
properties predict that movements remain reasonably well
controlled when motor commands are less accurately cus-
tomized to load condition.

4.1 Conclusion on motor control depend on the level of
simplification with which the periphery is modeled

We showed that for the model with no visco-elastic proper-
ties (T-model), all perturbations no matter how small changed
kinematics substantially (no robustness). This means that this
type of model predicts that motor commands need to be per-
fectly customized to external conditions and thus that to con-
trol movement detailed knowledge of the external conditions
(inertia, gravity, and velocity-dependent external torques) is
needed in addition to information on the ongoing move-
ment to adapt motor commands during movement execu-
tion.

Researchers use this type of model to interpret kinematic
responses as measured in perturbation experiments would
attribute all load compensation they find to adaptation of
motor commands. This affects the conclusions made on
motor control. For example, if it would be found that for
an unexpected 25 % change in inertia subjects show kine-
matic responses such as shown in Fig. 7 for the STIM-model
(red curves), using a T-model to explain these data would
lead to the conclusion that the adaptation of net elbow torque
to the new inertia was completely due to adaptation of motor
commands (for instance, by means of supraspinal feedback).
In the case that a STIM-model or a KBI-model would be
used, one could conclude that load compensation could occur
under motor commands that are not customized to the new
inertia, attributing the adaptation of net elbow torque to the
dynamics of the periphery.

We found that including damping and stiffness proper-
ties in the model of the periphery improved robustness to
perturbations tremendously compared to using a model that
neglects them (T-model). The predictions on how accurate
motor commands need to be with regard to external condi-
tions differed also for the three types of models that included
damping and stiffness properties. Therefore, when interpret-
ing kinematic responses as measured in perturbation experi-
ments, the amount of error correction attributed to adaptation
of motor commands based on knowledge of external condi-
tions depends on what type of model is used. This means that

the conclusions one will make on motor control will depend
on the type of model used to describe the dynamic behavior
of the periphery. We use the position-dependent torque per-
turbation as an example (Fig. 2b). If in an experiment setup
in which gravitational direction would be manipulated and
it would be found that participants showed endpoint errors
such as shown in Fig. 2 for the EP-model (grey curves), using
a KBI-model to explain these data would lead to the con-
clusion that motor commands had been adapted to the new
gravitational load, for instance, based on sensory information
on gravitational direction (vestibular system, vision, kines-
thetic). Using an EP-model would lead to the conclusion that
all load compensation could be attributed to the dynamics
of the periphery, leading to the conclusion that motor com-
mands are not customized to gravity.

The difference in kinematic responses for the three models
that include damping and stiffness properties is most promi-
nent in the position-dependent torque (gravitational) pertur-
bation (Fig. 3b). It is clear that the stiffness of the KBI-model
has a lower value than the low frequency stiffness found for
the STIM-model and the EP-model. First, is the choice of
parameters responsible for the differences in static error that
we found? We could increase the stiffness coefficient (K) for
the KBI-model, which would increase the model’s robust-
ness to this type of perturbation. Joint stiffness measured in
perturbation experiments varies between studies and higher
values have been reported (de Vlugt et al. 2006; Lacquaniti
et al. 1993). Yet, even with a higher stiffness, the model’s
response to perturbation (static error) would remain approx-
imately proportional to the gravitational torque and therefore
show a qualitatively different response than the STIM-model
and the EP-model. Second, one could also argue that gravity
leads (in addition to a position-dependent torque) also to a
position-independent increase in torque. This might affect the
behavior of the nonlinear models. We performed additional
simulations in which we introduced static torques (ranging
from −10 to 10 Nm), and found that this additional static
torque did not affect our results in describing robustness to
position-dependent torque perturbation.

The robustness to the gravitational perturbation is invers-
ely related to the level of simplification with which the
dynamical properties of the periphery are described (Fig. 3b).
This is, however, not the case for the other perturbations, as is
most clearly demonstrated in the velocity-dependent torque
perturbation. The following order from most robust to least
robust to this type of perturbation: EP-model, KBI-model,
STIM-model, and T-model. Since the dynamical properties
of the periphery are more simplified for the KBI-model than
the STIM-model, this does not resemble the following order
for the level of simplification. For the inertial perturbation,
we can make a similar conclusion on following order of
the robustness: KBI-model, STIM-model, EP-model, and T-
model.
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As we show that conclusions on motor control drawn
from kinematic responses to perturbations depend on the
type of model used to describe the dynamical properties of
the periphery, one could ask which model to use in order to
come to correct conclusions. This is a question that has no
simple answer. If we assume that the least simplified model
best describes the response of the human motor system we
would suggest to use this model. Yet, we did find that for some
perturbation types (Figs. 4f, 6e–f), a simplified model such
as the KBI-model would describe the kinematic responses to
perturbation equally well in terms of robustness compared
to less simplified STIM-model or EP-model. For these per-
turbation types, a KBI-model would be the most adequate.
The main conclusion of this study is that when using kine-
matic responses as found in perturbation experiment to come
to conclusions on motor control, the level of detail used to
describe the periphery should be considered carefully. The
contributions to robustness caused by the dynamics of the
periphery to the kinematic responses should be clear before
drawing conclusion on central motor control.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

Appendix A

In this appendix, we deduce that the behavior of the T-model
in response to a velocity-dependent force field with a posi-
tive damping coefficient will necessarily lead to the move-
ment ending in its starting position. We can describe the T-
model as:

Tcom + Text = I · ϕ̈ (A1)

with

Text = −b · ϕ̇ (A2)

Note that for b >0 the damping term (Eq. A2) will dis-
sipate the kinetic energy induced by the Tcom during move-
ment. At the end of the unperturbed movement, Tcom and the
movement velocity will have returned to zero.

For perturbed movements with b > 0, we take the integral
over time for Eq. A1 and we find:

tend∫

tstart

Tcomdt −
tend∫

tstart

b · ϕ̇dt = I · {ϕ̇(tend) − ϕ̇(tstart)} (A3)

where tstart is the time at the start of the simulation and tend is
the time that the perturbed movement velocity reached zero.
This definition of integration boundaries makes the right side
of Eq. A3 equal to zero. Furthermore, it makes the first term in
the left side of Eq. A3 equal to zero because model input Tcom

was defined such that in the unperturbed situation (b = 0):

tend∫

tstart

Tcomdt = I · {ϕ̇(tend) − ϕ̇(tstart)} = 0 (A4)

This means that the second term on the left side of Eq. A3
must also equal zero. If we rewrite this term,

tend∫

tstart

b · ϕ̇dt = b · {ϕ(tend) − ϕ(tstart)} = 0 (A5)

we find that ϕ at tend will always equal at tstart. This means
that at standstill the movement will always have returned to
its starting angle.
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