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ABSTRACT. Bayesian decision theory suggests that the statistics 
of an individual’s actions (prior experience) play an important 
role in motor control and execution. To elucidate this relation, we 
recorded 7 million mouse movements made by a group of 20 com-
puter users across a 50-day work period, allowing us to estimate 
the prior distribution of spontaneous hand movements. We found 
that the most frequent movements were in cardinal directions. The 
shape of this distribution was participant-specific but constant over 
time and independent of the computer that the participant used. 
This nonuniform directional distribution allowed us to predict 
systematic errors in initial movement directions, which matched 
well with the actual data. This shows how movement statistics can 
influence hand kinematics.
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he body of literature focusing on the kinematics of 
target-directed arm movements is vast—a search of 

PubMed using kinematics and arm movement as keywords 
yielded more than 1,500 relevant hits. Among others, gen-
eral characteristics of movement times and amplitudes 
(Fitts, 1966), curvature (Flash & Hogan, 1985; Wolpert, 
Ghahramani, & Jordan, 1994), movement variability (Hag-
gard & Richardson, 1996; van Beers, Haggard, & Wolpert, 
2004), movement direction (Baud-Bovy & Viviani, 2004; 
de Graaf, Sittig, & Denier van der Gon, 1991), and relations 
among these descriptors (Gottlieb, Song, Almeida, Hong, & 
Corcos, 1997; Smeets & Brenner, 1999) have been exten-
sively described. 

Recent theories of human perception and motor behavior 
have hypothesized that the found regularities are caused 
by the statistics of the visual world (like the distribution 
of fixation locations) and our motor repertoire (Purves, 
Lotto, Williams, Nundy, & Yang, 2001; Wolpert, 2007). 
This Bayesian approach (Kording, 2007; Kording & Wol-
pert, 2006) requires a thorough knowledge of the statistics 
of sensory input and motor output. For visual perception, 
measurements of specific parameters of images and scenes 
can be used to obtain reliable statistics (Foster, Amano, & 
Nascimento, 2006; Motoyoshi, Nishida, Sharan, & Adel-
son, 2007; Simoncelli, 2003). 

There is, however, no easy way to determine the statis-
tics of human motor performance. If studies are limited to 
short-term changes in instructed movements in a laboratory 
situation, the relevant statistics cannot be determined (e.g., 
Krakauer, Mazzoni, Ghazizadeh, Ravindran, & Shadmehr, 
2006). Therefore, studies (Kording & Wolpert, 2006; Wol-
pert, 2007) have only been able to infer the statistics of 

motor actions (referred to as priors) on the basis of observed 
movement variability within a very limited set of circum-
stances. Studies of natural, spontaneous arm movements 
over an extensive period of time have not been described 
(cf. Ingram, Kording, Howard, & Wolpert, in press). What 
amplitudes and directions are most commonly used? And 
are the movements straight? No knowledge about the statis-
tics of such basic parameters is available. 

To gain insight into natural movement behavior, we 
chose to measure computer mouse use because it is a 
frequently occurring type of arm movement that can be 
recorded without interfering with natural behavior. Using 
custom-built registration software, we registered mouse 
movements in a group of 20 computer users for a period of 
50 workdays during real-life computer work. These move-
ment trajectories were subsequently used to identify and 
characterize movement amplitudes, directions, velocities, 
and curvatures of more than 7 million naturally occurring 
arm movements. We will show that shape of the distribu-
tions of mouse amplitude and direction is similar across all 
participants, although highly participant-specific variations 
do exist (i.e., participants have a mouse signature). 

To investigate how these movement statistics influence 
motor execution, we reasoned that the uncertainty regard-
ing movement amplitude and direction decreases during 
movement execution. At the onset of the movement, there 
is significant uncertainty regarding the inverse kinemat-
ics and dynamics calculations needed to start a movement 
(Flash & Sejnowski, 2001) due to proprioceptive and visual 
errors (Smeets & Brenner, 2004; Sober & Sabes, 2005). In a 
Bayesian approach, this uncertainty is minimized by using 
prior experience (Kording & Wolpert, 2006). Moreover, 
Bayesian theory explains how this uncertainty (in terms of 
the likelihood) and the prior experience (the Bayesian Prior) 
are to be combined to minimize errors in endpoint direction. 
This would mean that the initial muscle activation chosen to 
start a movement would be influenced by how likely it was 
to make a movement in a particular direction. Such a control 
scheme implies that the initial movement direction for a cer-
tain endpoint direction can be predicted on the basis of the 
frequency distribution of endpoint directions. The advantage 
is that during the initial stages of the movement, execution 
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can be quickened by relying on the most common motor 
commands speeded-up. In this article, we will show that 
this is the case.

Methods

Participants and Data Acquisition 

We installed custom-built registration software on the 
computers used by 20 participants, healthy employees (9 
men, 11 women; M ± SD age = 33.9 ± 8.7 years) of the 
Erasmus Medical Center in Rotterdam, The Netherlands. 
Participants signed informed consent forms before entering 
the study. The participants performed a variety of computer-
intensive work; 8 had administrative jobs, 6 were research-
ers, and 6 had managerial or other functions. Participants’ 
monitors had an aspect ratio of 4 to 3. In all, 12 participants 
worked behind a monitor with a resolution of 1024 × 768 
pixels, 7 worked with a higher resolution screen, and 1 
worked with a lower resolution screen. Of the participants, 
each of 14 worked behind a single computer, whereas each 
of 6 worked with 2 different computers.

Participants were instructed to turn off the acceleration 
setting of the mouse and not to change the mouse gain dur-
ing the measurement period. To establish how much the 
hand moved relative to the movement of the cursor on the 
screen, we had all participants perform a small calibration 
experiment in which they traced a square with a side of 3 cm 
on a piece of paper using the mouse. Across all participants, 
we found a gain of 197 ± 58 pixels/cm hand displacement.

The software registered the position of the cursor (x-, 
y-coordinates in pixels) with a frequency of 10 Hz and 
logged these data in the background to not interfere with the 
regular work of the participants. The unobtrusive nature of the 
installed monitoring software ensured that they quickly forgot 
that they were being monitored. It is unlikely that participants 
altered their working behavior as a consequence of participat-
ing in the study. Data were transferred automatically to a cen-
tral server and processed offline (Slijper, Richter, Smeets, & 
Frens, 2007). To ensure that the data files (for each participant 
for every day) contained sufficient data, data files containing 
fewer than 10,000 position changes of the cursor ( > 1 pixel) 
were not selected. For this study, we processed a random 
sample of 50 workdays for each of the participants.

Data Processing

Identification of Individual Cursor Movements

For each of the 1,000 recorded days, we extracted the 
times at which the cursor changed position. These time 
series, containing the corresponding displacements of the 
cursor in horizontal direction (x) and vertical direction (y), 
were used for further analysis. 

To identify the start point and endpoint of cursor move-
ments (see Figure 1A) from the recorded time traces, we 
calculated the (vector) combined displacement in x and y 
directions (xy). We considered as the start point of a cur-
sor movement the sample after which the ∆xy exceeded a 

threshold. The endpoint was defined as the sample after 
which ∆xy became subthreshold. We chose a threshold of 5 
pixels/sample (approximately 0.25-mm hand movement) to 
ensure we could calculate movement direction accurately for 
small amplitude movements (because the screen forms a grid 
of pixels, only a small number of movement directions are 
defined for very small movements). By using a threshold of 5 
pixels, we excluded only 10.7 ± 2.4% of the movements.

For every cursor movement, we determined subsequently 
the movement time, the amplitude (straight distance from start 
point to endpoint), and the endpoint direction. To estimate the 
magnitude of hand displacements (in cm) for the recorded 
cursor displacements, we divided the found amplitudes by the 
individual’s gain factor from the calibration experiment. 

For every working day and for every computer separately 
these values were used to determine individual usage pat-
terns (see Figure 2).

Bayesian Predictions

To investigate whether the statistics of movement directions 
influenced the initial movement direction of individual move-
ments, we analyzed movements for which this initial direction 
could be reliably determined. As our measurement method 
does not permit us to determine the direction of short move-
ments, we restricted ourselves for this analysis to movements 
with amplitudes of at least 12 pixels and containing 5 data 
points or more (40% of the total number of movements).

According to Bayes’s rule, the chance of a (initial) 
movement direction (ϕi) given the sensory estimate ϕe, is 
described as: 
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where P(ϕe|ϕi) is the sensory precision (given a direction ϕi, 
the chance that the sensory estimate equals (ϕe), and P(ϕi) is 
the a priori chance for ϕi to occur. The chance P(ϕe) is sim-
ply a normalization factor and does not change the relative 
probabilities between ϕe and ϕi. In the analysis, we modeled 
the sensory precision by a Gaussian distribution with SD = 
17° and used the measured distribution of endpoint direc-
tions (histogram) as the prior. 

To find the most likely value for the initial movement 
direction given a certain sensory estimate, ϕi(ϕe), we calcu-
lated the weighted average, or each value ϕi multiplied by 
its chance to occur:
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To compare this prediction with the actual relation between 

ϕi and ϕe, we calculated ϕi – ϕe by the angle between a straight 
line distance between start (S) and end location (E) and the 
line from S to the sample point (M), where the distance 
between the trajectory and the straight line distance between 
S and E was maximal (see Figure 3). If the initial movement 
direction deviated in clockwise direction compared with the 
endpoint direction, the angle was denoted as positive.
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Results

General Characteristics

On average, participants worked 8 hr and 29 min per day 
(computer on–off time). During this period, they made on 
average 7,192 (± 1967; SD between participants) cursor 
movements with a total duration of 1 hr and 12 min (± 23 
min). During a day, the cursor followed a path of more than 
1.5 million pixels (± 480,580), corresponding to approxi-
mately 74 m of hand movement. 

Figure 1A shows an example of the displacements dur-
ing cursor movements made by 1 participant during 1 day 
of work. We translated the starting location of each move-
ment to the origin (0, 0). Note the nonuniform distribution 
of movements and the abundance of horizontal and vertical 
movements. This was not a specific characteristic of this 
participant but was true for all participants (see Figures 1B 
and C, compare the different lines). 

The average median amplitude of the hand movements 
was 0.32 ± 0.08 cm  (corresponding to 62 ± 15 pixels of 
cursor movement). Shown in Figure 1B is the amplitude 
distribution of the hand movements for all the participants. 
The average median duration of the movements was 0.29 
± 0.05 s. Additionally, we found that the movements had a 
low average velocity (path length divided by the duration). 
The distributions of the average velocities showed that the 
majority ( > 50%) of mouse movements were performed 
with a hand velocity smaller than 1 cm/s.

Distribution of Movement Directions 

The preference for movements in cardinal directions on 
an average day for each of the 20 participants is shown in 
Figure 1C. Horizontal and vertical movements are most 
common in all participants. Almost half the movements 
(47.5%) were horizontal (within 22.5º from 0º [right] and 
180º [left]), and 27% were vertical (within 22.5º from 90º 
and 270º). Figure 1C shows that the directional patterns for 
different participants (the different lines) are quite similar. 
Note that horizontal and vertical cursor movements cor-
respond to hand movements to the left and to the right and 
away and toward the body, respectively.

Variability in amplitude between individual movements 
(reflected in the coefficient of variation across all directions 
and participants) was on average 13% larger for diagonal 
directions than for cardinal directions.

When we looked into the data of individual participants 
in more detail, we found that the directional pattern was 
surprisingly invariant across days and that there were idio-
syncratic differences between the participants (see Figure 2).  
For instance, the difference in number of horizontal and verti-
cal movements is much larger for Participant 1 than for Par-
ticipant 3. Similar distinctive patterns were found in all other 
participants. Such differences are not due to differences in 
hardware, as the directional pattern was also invariant across 
computer used for participants who worked on more than one 
computer (see data of Participants 5 and 6 in Figure 2).

FIGURE 1. Overview of results. (A) Typical example of cur-
sor movements made by Participant 3 during 1 day. Starting 
points of the movements have been translated to the origin 
(0, 0); the endpoints of the movements are marked with a 
black dot. (B) Distribution of amplitudes of hand movements 
for all 20 participants (the different lines) across days. The 
distribution (thick line group average) is skewed: Movements 
between 0.2 and 0.4 cm occur most often (median, 0.32 cm). 
(C) Directional distribution of movements (averaged across 
days) for the 20 participants (the different lines). The dashed 
line shows the distribution for random movements. Note the 
preference for movements in cardinal directions. Directions 
are binned using 10° bins. Outer circle = 1,000 movements.
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FIGURE 2. Examples of individual directional distributions. The top 4 panels show data 
across 25 days (the different lines) from Participant 1–4. Histogram data were normalized by 
dividing through the total number of movements for each day (scale: dimensionless units). 
Note the marked differences between the participants and the invariance of the pattern across 
days and computers. The lower four panels represent data generated by 2 participants work-
ing on two computers (left vs. right panels). Note the similarity in pattern between computers 
used by a single participant. P = participant; C = computer.
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Predicting Initial Movement Direction

Initial movement directions deviated systematically from 
the direction of the endpoint of movements. Averaged 
across all participants and days, these errors were up to 8°, 
depending on the movement direction (See Figure 3, solid 
line). It is interesting that the directional error changed sign 
at the peaks in relative frequency (0° and 180°; Figure 3) or 
was very close to zero (at 90° and 270°) and that the slope 
of the curve was positive. In other words, the movements 
that occurred most often were those that had the smallest 
error in initial movement direction, and movements that 

had endpoints close to these frequently occurring directions 
were biased to these directions.

Using Bayesian inference, we made a prediction of how 
initial movement direction would deviate from the direc-
tion of the endpoint, on the basis of how often movements 
occurred in specific movement directions, as previously 
mentioned in the introduction. Figure 3 (dashed line) shows 
the results of this prediction. After averaging the predicted 
values across all participants, we found a highly significant 
correlation of 0.703 (p < .0001) between the predicted 
errors and the found errors in initial movement direction. 

FIGURE 3. Relation between initial movement direction and direction of the endpoint. Shown 
are results for mouse movements across all participants. (A) Relative frequency of movements 
in particular directions (bins of 5°). A higher frequency of occurrence is related to smaller devi-
ances in initial movement direction. The horizontal line denotes the average frequency across 
all movement directions. (B) Error in initial movement direction (ϕi – ϕe) was defined using the 
sample point M where the distance between the line S–E and movement trajectory was largest. 
ϕi – ϕe is shown as a solid line. The result of a Bayesian prediction of how initial movement 
direction depends on the distribution of mouse movement directions is shown by the dashed 
line. The found and predicted error in movement direction follow a similar shape across the 
movement directions.
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Note how the data follow the shape of the prediction across 
all movement directions. The quality of this correspondence 
varied per participant, but we found a positive correlation 
for all 20 participants (on average, 0.44 ± 0.20; p < .01). 

Discussion

Directional Pattern of the Mouse Movements

An important finding of the present study is that par-
ticipants have strong directional preferences when making 
mouse movements. That is, movements in cardinal direc-
tions occur more often than diagonal movements (see star 
shapes in Figure 1C and Figure 2). 

At least two factors might explain such preferences: (a) 
the structure of the visual field (here the computer–user 
interface) and (b) factors involving the motor control sys-
tem (i.e., biomechanics and the visuo-motor transforma-
tion). The structure of the visual field has a large influence 
on the direction and amplitude of target-directed eye move-
ments (saccades; Hooge, Over, van Wezel, & Frens, 2005), 
which are likely to precede the majority of mouse move-
ments. Moreover, during computer use, the visual field also 
directly evokes certain motor performance, because many 
of the objects on the screen are interactive. That is, they 
allow the participant to click, select, move, or drag visual 
objects by using the mouse.

Over (2007) showed a preference for horizontal and 
vertical eye movements in tasks where the participant is to 
search for a target within a rectangular field. That is, par-
ticipants’ eye movements tend to follow luminance edges 
surrounding the workspace. A similar effect could occur 
for mouse movements. Because the user interface of most 
computers consists of rectangular elements organized in 
rows and columns (lists, menus, tabs, fields, buttons, etc.), 
it would provide a large number of horizontal and vertical 
lines that could induce a preference for mouse movements 
in cardinal directions. 

Although the directional pattern across participants 
looked quite similar (Figure 1C), the pattern also seemed 
to contain some idiosyncratic characteristics that were spe-
cific for the individual user (see Figure 2). Thus, it seems 
that individuals have a mouse signature, or a typical way in 
which they move their mouse. It is likely that idiosyncrasies 
of the used software, such as the characteristics of the user 
interface of different programs, influence a participant’s 
movement pattern in subtle ways, giving rise to reliable 
interindividual differences as observed in the directional 
distributions of the movements. Further study is needed 
to determine whether this signature is more indicative of 
which software a participant uses or which participant uses 
particular software. Either way, it is important to notice that 
these small amplitude movements, occurring thousands of 
times each day, compromise our exposure and are therefore 
a prior for future movements.  

A second factor that might underlay directional biases 
is a mechanical one. Because different joint motions are 

involved when moving in different directions, the inertia 
of the arm is not equal for all directions (inertial anisot-
ropy; Flanagan & Lolley, 2001; Gentili, Cahouet, Ballay, 
& Papaxanthis, 2004; Sabes, Jordan, & Wolpert, 1998). 
Maximum inertia is commonly seen for movements in the 
sagittal direction (movements that would be vertical on the 
computer screen) because of larger motion in the elbow 
and shoulder. This effect might explain the preference for 
horizontal cursor movements over vertical cursor move-
ments, but not the preference for the cardinal axes over 
the diagonals. Control schemes based on the optimization 
of variables related to inertial properties of the arm seem 
therefore unlikely to be able to explain the observed direc-
tional preferences. Moreover, it is not very likely that this 
factor has a large influence because of the low velocities 
(and thus low acceleration) of the movements. 

We have found that initial movement errors were larg-
est for diagonal directions (see Figure 3), that the error 
in initial movement direction depends on the direction of 
the endpoint, and that amplitude variability was largest for 
diagonal movements. These findings are in line with several 
experimental studies using relatively large arm movements 
(30–40 cm). Movements in oblique directions have the larg-
est error in start direction (de Graaf, et al. 1991), have the 
largest endpoint errors without visual feedback (Baud-Bovy 
& Viviani, 2004), and are more curved (Smyrnis, Mantas, & 
Evdokimidis, 2007). 

Several studies have assumed that these directional biases 
originate in a distorted internal representation of target direc-
tion. The present data show that such a distortion may origi-
nate partly from the statistics of our actions. Using a Bayesian 
approach (Ghahramani, 2000; Kording, 2007), we showed 
that directional distribution of movements could be regarded 
as a prior for the initial movement direction. For instance, we 
found that movements slightly above or below the horizontal 
direction had an initial movement direction along the horizon-
tal direction in line with the high occurrence of these move-
ments. This could mean that participants move in a direction in 
which they are likely to make the least movement error. How-
ever, mouse movements are not totally unconstrained. Usually 
movements are made toward a target, which can have any 
location relative to the current cursor location. Most move-
ments will thus require a movement in a specific movement 
direction, so that moving in the direction in which the indi-
vidual makes the least error will therefore not be effective. 

Alternatively, the results we obtained could be explained 
by using an optimization approach (Ghez, Hening, & Gor-
don, 1991), for instance, by minimizing jerkiness of the 
movement trajectory or energy expenditure. However, it 
will be difficult to find a cost function that can explain the 
large (on average up to 8°; see Figure 3) deviations in start 
direction, because highly curved trajectories are likely to 
cost more than straight trajectories. 

Moreover, because the prior that is used in the Bayesian 
statistics method is known and the cost function that is used 
in a cost function analysis is an unknown, the most obvious 
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method to model our mouse movement data is to use Bayes-
ian statistics. Therefore, a more likely explanation would be 
that individuals used prior experience and used this infor-
mation to optimize the probability of moving in the right 
movement direction. Therefore, the statistics of individuals’ 
actions influence movement execution: The more often 
movements are made in a particular direction the more 
likely the initial movement will point in that direction.
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