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OBSERVATIONS

The Contribution of Covariation to Skill Improvement
Is an Ambiguous Measure: Comment on Miiller and Sternad (2004)

Jeroen B. J. Smeets and Stefan Louw
Vrije Universiteit

It has been proposed that it is possible to decompose changes in variability of human motor behavior into
3 independent components: covariation, task tolerance, and stochastic noise (H. Miiller & D. Sternad,
2004). The authors simulate learning to throw accurately and show that for this task the proposed analysis
does not give an unambiguous answer to the question of what the 3 components contribute to the
simulated skill improvement. It is argued that this is caused by the fact that the component covariation
depends on the choice of control variables. The authors conclude that it is not possible to distinguish
between the 3 components of noise reduction without knowing the controlled variables.
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It has been proposed that it is possible to split changes in
variability of human motor behavior into three independent com-
ponents: covariation, task tolerance, and stochastic noise (Miiller
& Sternad, 2004). If feasible, such decomposition would be very
useful for understanding motor control, because the three compo-
nents refer to clearly different processes. Reducing variability in
performance by changing stochastic noise means low-level noise
reduction. Exploiting task tolerance (finding a movement strategy
in which the same noise has the least effect on performance) and
covariation (compensating the variability in one execution variable
by that in another variable) are two clearly distinct higher level
processes. In this article we use a simulation of learning to throw
accurately to study whether we can reliably determine the contri-
bution of the three components.

Mathematical analysis is essential for a proper understanding of
motor control. To gain such an understanding, one needs to trans-
late both concepts and experimental variables into mathematical
entities. If one of the assumptions made for this translation is not
valid, a mathematical analysis can easily lead to erroneous con-
clusions about motor learning. For instance, if subjects reduce their
movement time exponentially during learning, one might (errone-
ously) assume that the increase in peak velocity will also be
exponential. An analysis based on this assumption will lead to the
conclusion that there are several learning processes with different
time constants in a situation in which there is only one learning
process (Smeets, 2000). One common step in the translation is a
transformation of variables, for instance from raw sensor data of a
motion analysis system to Cartesian coordinates. So that we can
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draw conclusions about motor learning, the result of the analysis
should be independent of the choice of variables, or it should be
clear which variables should be used. Before going into the de-
composition method proposed by Miiller and Sternad (2004), we
discuss this issue with a simple example.

If we want to know whether a subject’s behavior is the same in
two conditions, we generally start with comparing the means, a
measure that is easy to calculate and understand. Comparing
means is invariant under linear transformations such as a transla-
tion or rotation of the reference frame; nonlinear transformations,
however, might affect comparisons of means. Let us assume that
the subject had the same mean behavior in both conditions and that
the variability was normally distributed. If we transform the data
for the two conditions in a nonlinear way (e.g., by taking the
logarithm), the distributions will no longer be normal. The conse-
quence is that the means of the transformed variable will be
different for the two conditions if the original standard deviations
were different. The lesson of this example (a lesson that can be
found in any textbook on statistics) is that comparing means is
useful only if they are from a normal distribution. If this is not the
case, one should either transform the data to get a normal distri-
bution or use nonparametric statistics.

The use of the concept of covariation is not without pitfalls, as
has been recognized by Miiller and Sternad (2004). Therefore,
instead of covariance they have used a “smart” method to calculate
the contribution of covariation by permuting variables in execution
space within a data set and studying the effect on the variability in
task performance (Miiller & Sternad, 2003). This method can deal
with the effects of nonlinearity in the relation between variables.
However, covariance has another problematic feature: It depends
critically on the variables chosen to describe behavior. For in-
stance, one can always rotate the frame of reference to get vari-
ables that have zero covariance. Is this also the case if we use the
smart method for determining covariation? To see whether the
choice of variables affects the extent to which changes in covaria-
tion (as determined by the method proposed by Miiller & Sternad,
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2003) contribute to changes in task performance, we simulated
learning to throw accurately.

For simplicity, we reduced the task space for throwing to only
two execution variables: We restricted movements to a vertical
plane and assumed that the release position was constant (verti-
cally aligned at a distance [X] of 2 m from the target; see Figure 1).
Thus only the two-dimensional release velocity varied between
trials. The flight time in a trial (i) was equal to the horizontal
distance divided by the horizontal component of the release ve-
locity (v, ;). The vertical distance moved depended on the flight
time, vertical component of the release velocity (v,,), and the
gravitational acceleration (g). The performance in each trial was
equal to the absolute value of the vertical distance from the target;
for a block of n trials, the performance measure D was the average
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We modeled three blocks (each 100 trials) and assumed that
between these blocks subjects improved their performance by
exploiting the task tolerance; we thus kept the (Gaussian) stochas-
tic noise constant and the covariance zero (see Table 1 and Figure
1). The performance clearly improved (as shown by a lower value
for D) by shifting the simulated movements to a region with a
larger task tolerance (AD, , = 0.129 m and AD, 5 = 0.091 m). We
simulated learning to throw using Cartesian coordinates, following
the description of throwing in the original work (see Figure 1 of
Miiller & Sternad, 2004). The improvement in performance in our
simulations was thus modeled as a pure exploitation of task tol-
erance, without any change in stochastic noise or covariance.
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We subsequently applied the analysis proposed by Miiller and
Sternad (2004) using the polar coordinates they used to analyze
their example task (skittles). As performance in both skittles and
throwing is determined by release velocity, we found no reason not
to analyze our throwing task also in polar coordinates. We trans-
formed the simulated data from Cartesian coordinates (v,, v,) to
the polar coordinates (b, Ivl; see Figure 2) and followed Miiller and
Sternad’s method to decompose the changes in performance into
changes in stochastic noise, covariation, and task tolerance. If the
method yields results that are invariant under coordinate transfor-
mations, we should find the same results when analyzing in polar
coordinates as when analyzing in Cartesian coordinates.

The method starts with determining the change in performance
(AD) caused by covariation (AC) by permuting combinations of ¢
and Ivl within each of the three blocks of the experiment (Miiller &
Sternad, 2003). If covariation is exploited to obtain good perfor-
mance, D will be larger for the permutated data. If D is smaller for
the permutated data, the covariation hindered performance. In
order to get a reliable measure for AC, we applied 10 different
permutations and averaged the results. The difference in contribu-
tion of covariation to performance in two blocks is the contribution
of covariation to the change in performance. Subsequently, the
method determines the contributions of task tolerance (AT) by
shifting the permutated data to the average location of the next
block. If task tolerance is exploited, the same distribution of data
will yield a better performance (lower value for D). The remaining
change in performance is due to change in noise (AN):

AD = AC+ AT + AN.

As expected for variables that are independent, we found neg-
ligible contributions of covariation and noise reduction in the
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Figure 1.

The graph (to the left) shows task space of throwing in Cartesian coordinates. Gray levels indicate

the value of the absolute error on the target plane for each combination of release velocity (v). Each point
represents a model trial. The human figure (to the right) illustrates the task geometry.
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Table 1
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Means and Standard Deviations of the Normal Distributions From Which the Release

Parameters Were Randomly Chosen

Horizontal release velocity (m/s)

Vertical release velocity (m/s)

Block M SD M SD D (m)
1 1.50 (1.49) 0.08 (0.07) 6.53(6.53) 0.35(0.34) 0.516
3.13(3.12) 0.08 (0.08) 3.13 (3.06) 0.35(0.37) 0.196

3 6.53 (6.52) 0.08 (0.07) 1.55 (1.55) 0.35(0.33) 0.083
Note. The values for the resulting distributions appear in parentheses. D = resulting performance of the

simulated throwing movements.

analysis based on Cartesian coordinates (see Table 2). The change
in noise we found is due to the fact that the random choices of 100
samples from a Gaussian distribution had a slightly different
standard deviation for each block (see Table 1). Analyzed in polar
coordinates, however, the changes in performance reveal a con-
siderable contribution of covariation and noise reduction. The
change in covariation contributes negatively to improvement ac-
cording to this analysis, which is compensated by noise reduction
and a larger task tolerance. However, this is only so in polar
coordinates. Described in Cartesian coordinates, our simulated
learning was only due to exploiting task tolerance: The noise was
almost constant and the contribution of covariation randomly
fluctuated around zero.

Why does the apparent contribution of covariation depend on
the coordinate system? It is a direct consequence of the fact that
there is correlation between the two variables when using polar
coordinates but not when using Cartesian coordinates. The trans-
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formation from Cartesian to polar coordinates is a nonlinear one,
but even linear transformations can introduce covariance (and thus
covariation). A simple example is a rotation of the Cartesian axes
around the origin. Covariation in the data is therefore not a good
measure of (lack of) compensation. One can always rotate the
execution space to remove the covariance and thus change the
covariation (this can be done for only one block at a time).

We have shown that a learning behavior that is described in
Cartesian coordinates as a pure exploitation of the variations in
task tolerance seems a lot more complex in polar coordinates when
using the decomposition method for variability (Miiller & Sternad,
2004). One property of a good mathematical tool is that its out-
come should be reliable and not depend on the arbitrary choice of
units or coordinate system. As the decomposition method yields
results that clearly depend on the chosen coordinate system, it is
not a very valuable tool. This is unfortunate, as the decomposition
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Figure 2. The graph (to the left) shows task space of throwing in polar coordinates. Gray levels indicate the
value of the absolute error on the target plane for each combination of release velocity (v). Each point represents
a model trial. The human figure (to the right) illustrates the task geometry.
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Table 2

Average Change in Performance (D) and Components of Variability Between Trial Blocks

Polar Cartesian
Block AD AC AT AC AT AN
1-2 —0.320 0.326 = 0.011 —0.598 £0.011 —0.049 * 0.002 —0.004 = 0.007 —0.326 = 0.006 0.008 = 0.002
2—=3 —0.113 0.016 = 0.001 —0.087 £ 0.002 —0.042 = 0.001 0.001 = 0.001 —0.108 = 0.001 —0.006 £ 0.001

Note. Values are in meters (= SEM). Components of variability (covariation [C], task tolerance [T], and stochastic noise [N]) were determined with the
method of Miiller and Sternad (2004) in both polar and Cartesian coordinates, using 10 repetitions of the permutation.

method would be very useful if one could substantiate claims that
one actually can tailor the (co)variance to the task.

Isn’t it possible to save the method for decomposing variability?
This might be possible if there is a “proper” coordinate system to
apply the analysis for a given task. For comparing means, the
proper coordinate system is the one in which the variability is
distributed normally. For the decomposition of variability, a cor-
responding requirement for a proper coordinate system has not yet
been defined. Probably, one can determine the proper coordinate
system on the basis of the task. One might argue that this was the
case in the experiment of Miiller and Sternad (2004), because in
their computer task subjects controlled two separate input devices.
The controlled variables were speed profile of arm rotation (speed
and position) and time of finger release. The authors did not use
these variables, presumably because they form a three-dimensional
space. In most daily tasks, it is not quite clear what the controlled
variables are, neither at the level of the muscle (Stein, 1982) nor at
the level of kinematics (Desmurget, Prablanc, Jordan, & Jean-
nerod, 1999; van den Dobbelsteen, Brenner, & Smeets, 2001).
Even the proponents of the method use both a polar and a Carte-
sian coordinate system to describe throwing (Miiller & Sternad,
2004). The only way to save the method is by leaving out the
estimation of the covariation and decomposing the changes in
performance in only two components: exploiting task tolerance
and noise reduction. However, this decomposition does not work
in all situations: Nonlinear transformations can also make the
contribution of noise reduction ambiguous.

We have to conclude, therefore, that there is not yet a reliable
way to decompose variability. Moreover, claims about covariation

(or compensation) between variables do not describe a property of
the behavior that one is studying but only a property of the
variables that one has chosen to describe the behavior.
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